These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 37221913)
1. Next-generation materials for RNA-lipid nanoparticles: lyophilization and targeted transfection. Wang T; Sung TC; Yu T; Lin HY; Chen YH; Zhu ZW; Gong J; Pan J; Higuchi A J Mater Chem B; 2023 Jun; 11(23):5083-5093. PubMed ID: 37221913 [TBL] [Abstract][Full Text] [Related]
2. Design and lyophilization of mRNA-encapsulating lipid nanoparticles. Wang T; Yu T; Li W; Liu Q; Sung TC; Higuchi A Int J Pharm; 2024 Sep; 662():124514. PubMed ID: 39067550 [TBL] [Abstract][Full Text] [Related]
3. Continuous freeze-drying of messenger RNA lipid nanoparticles enables storage at higher temperatures. Meulewaeter S; Nuytten G; Cheng MHY; De Smedt SC; Cullis PR; De Beer T; Lentacker I; Verbeke R J Control Release; 2023 May; 357():149-160. PubMed ID: 36958400 [TBL] [Abstract][Full Text] [Related]
4. Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids. Lamoot A; Lammens J; De Lombaerde E; Zhong Z; Gontsarik M; Chen Y; De Beer TRM; De Geest BG Biomater Sci; 2023 Jun; 11(12):4327-4334. PubMed ID: 37073472 [TBL] [Abstract][Full Text] [Related]
5. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery. Patel SK; Billingsley MM; Mukalel AJ; Thatte AS; Hamilton AG; Gong N; El-Mayta R; Safford HC; Merolle M; Mitchell MJ Theranostics; 2024; 14(1):1-16. PubMed ID: 38164140 [TBL] [Abstract][Full Text] [Related]
6. Chemistry of Lipid Nanoparticles for RNA Delivery. Eygeris Y; Gupta M; Kim J; Sahay G Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Alejo T; Toro-Córdova A; Fernández L; Rivero A; Stoian AM; Pérez L; Navarro V; Martínez-Oliván J; de Miguel D Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408932 [TBL] [Abstract][Full Text] [Related]
8. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. Da Silva Sanchez AJ; Zhao K; Huayamares SG; Hatit MZC; Lokugamage MP; Loughrey D; Dobrowolski C; Wang S; Kim H; Paunovska K; Kuzminich Y; Dahlman JE J Control Release; 2023 Jan; 353():270-277. PubMed ID: 36423872 [TBL] [Abstract][Full Text] [Related]
9. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways. Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311 [TBL] [Abstract][Full Text] [Related]
10. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. Mrksich K; Padilla MS; Joseph RA; Han EL; Kim D; Palanki R; Xu J; Mitchell MJ J Biomed Mater Res A; 2024 Sep; 112(9):1494-1505. PubMed ID: 38487970 [TBL] [Abstract][Full Text] [Related]
11. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Athaydes Seabra Ferreira H; Ricardo Aluotto Scalzo Júnior S; Kelton Santos de Faria K; Henrique Costa Silva G; Túllio Rodrigues Alves M; Oliveira Lobo A; Pires Goulart Guimarães P Int J Pharm; 2024 Nov; 665():124696. PubMed ID: 39265853 [TBL] [Abstract][Full Text] [Related]
12. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Reinhart AG; Osterwald A; Ringler P; Leiser Y; Lauer ME; Martin RE; Ullmer C; Schumacher F; Korn C; Keller M Mol Pharm; 2023 Dec; 20(12):6492-6503. PubMed ID: 37975733 [TBL] [Abstract][Full Text] [Related]
13. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Ball RL; Bajaj P; Whitehead KA Int J Nanomedicine; 2017; 12():305-315. PubMed ID: 28115848 [TBL] [Abstract][Full Text] [Related]
14. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing. El-Mayta R; Padilla MS; Billingsley MM; Han X; Mitchell MJ J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744791 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies. Nabar N; Dacoba TG; Covarrubias G; Romero-Cruz D; Hammond PT Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2307809121. PubMed ID: 38437543 [TBL] [Abstract][Full Text] [Related]
16. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Yanez Arteta M; Kjellman T; Bartesaghi S; Wallin S; Wu X; Kvist AJ; Dabkowska A; Székely N; Radulescu A; Bergenholtz J; Lindfors L Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3351-E3360. PubMed ID: 29588418 [TBL] [Abstract][Full Text] [Related]
17. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660 [TBL] [Abstract][Full Text] [Related]
18. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050 [TBL] [Abstract][Full Text] [Related]
19. Development of an Alcohol Dilution-Lyophilization Method for Preparing Lipid Nanoparticles Containing Encapsulated siRNA. Shirane D; Tanaka H; Nakai Y; Yoshioka H; Akita H Biol Pharm Bull; 2018; 41(8):1291-1294. PubMed ID: 30068880 [TBL] [Abstract][Full Text] [Related]
20. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]