These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37221948)

  • 21. Micromixing within microfluidic devices.
    Capretto L; Cheng W; Hill M; Zhang X
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of nanomaterials by continuous-flow microfluidics: a review.
    Makgwane PR; Ray SS
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1338-63. PubMed ID: 24749429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic synthesis of nanomaterials.
    Song Y; Hormes J; Kumar CS
    Small; 2008 Jun; 4(6):698-711. PubMed ID: 18535993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The past, present and potential for microfluidic reactor technology in chemical synthesis.
    Elvira KS; Casadevall i Solvas X; Wootton RC; deMello AJ
    Nat Chem; 2013 Nov; 5(11):905-15. PubMed ID: 24153367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic approach for synthesis and kinetic profiling of branched gold nanostructures.
    Cai Q; Castagnola V; Boselli L; Moura A; Lopez H; Zhang W; de Araújo JM; Dawson KA
    Nanoscale Horiz; 2022 Feb; 7(3):288-298. PubMed ID: 35119063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic-based nanoparticle synthesis and their potential applications.
    Khizar S; Zine N; Errachid A; Jaffrezic-Renault N; Elaissari A
    Electrophoresis; 2022 Apr; 43(7-8):819-838. PubMed ID: 34758117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and optimization of microfluidic assisted manufacturing process to produce PLGA nanoparticles.
    Chiesa E; Bellotti M; Caimi A; Conti B; Dorati R; Conti M; Genta I; Auricchio F
    Int J Pharm; 2022 Dec; 629():122368. PubMed ID: 36343906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems.
    Zhu D; Long Q; Xu Y; Xing J
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic assisted synthesis of silver nanoparticle-chitosan composite microparticles for antibacterial applications.
    Yang CH; Wang LS; Chen SY; Huang MC; Li YH; Lin YC; Chen PF; Shaw JF; Huang KS
    Int J Pharm; 2016 Aug; 510(2):493-500. PubMed ID: 26780124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices.
    Toth MJ; Kim T; Kim Y
    Lab Chip; 2017 Aug; 17(16):2805-2813. PubMed ID: 28726923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fab on a Package: LTCC Microfluidic Devices Applied to Chemical Process Miniaturization.
    Cobas Gomez H; Mansini Cardoso R; de Novais Schianti J; Marim de Oliveira A; Gongora-Rubio MR
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects.
    Maged A; Abdelbaset R; Mahmoud AA; Elkasabgy NA
    Drug Deliv; 2022 Dec; 29(1):1549-1570. PubMed ID: 35612293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ immobilization of palladium nanoparticles in microfluidic reactors and assessment of their catalytic activity.
    Lin R; Freemantle RG; Kelly NM; Fielitz TR; Obare SO; Ofoli RY
    Nanotechnology; 2010 Aug; 21(32):325605. PubMed ID: 20647623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.
    Seo M; Matsuura N
    Langmuir; 2014 Oct; 30(42):12465-73. PubMed ID: 25188556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition.
    Sebastian V
    Nanoscale; 2022 Mar; 14(12):4411-4447. PubMed ID: 35274121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles.
    Zhang L; Beatty A; Lu L; Abdalrahman A; Makris TM; Wang G; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110768. PubMed ID: 32279782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.