BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37221952)

  • 1. Super-resolution imaging of linearized chromatin in tunable nanochannels.
    Lee JH; Chiu JH; Ginga NJ; Ahmed T; Thouless MD; Liu Y; Takayama S
    Nanoscale Horiz; 2023 Jul; 8(8):1043-1053. PubMed ID: 37221952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of DNA damage induced repair focus formation via super-resolution dSTORM localization microscopy.
    Varga D; Majoros H; Ujfaludi Z; Erdélyi M; Pankotai T
    Nanoscale; 2019 Aug; 11(30):14226-14236. PubMed ID: 31317161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Confinement for Bridging Single-Cell Manipulation and Single-Molecule DNA Linearization.
    Yu M; Hou Y; Song R; Xu X; Yao S
    Small; 2018 Apr; 14(17):e1800229. PubMed ID: 29575689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale squeezing in elastomeric nanochannels for single chromatin linearization.
    Matsuoka T; Kim BC; Huang J; Douville NJ; Thouless MD; Takayama S
    Nano Lett; 2012 Dec; 12(12):6480-4. PubMed ID: 23186544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin.
    Prior CP; Cantor CR; Johnson EM; Littau VC; Allfrey VG
    Cell; 1983 Oct; 34(3):1033-42. PubMed ID: 6313204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal Motion of Chromatin Fibers Is Governed by Dynamics of Uncompressed Linker Strands.
    Basak R; Rosencrans W; Yadav I; Yan P; Berezhnoy NV; Chen Q; van Kan JA; Nordenskiöld L; Zinchenko A; van der Maarel JRC
    Biophys J; 2020 Dec; 119(11):2326-2334. PubMed ID: 33121944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A guide to visualizing the spatial epigenome with super-resolution microscopy.
    Xu J; Liu Y
    FEBS J; 2019 Aug; 286(16):3095-3109. PubMed ID: 31127980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo.
    Otterstrom J; Castells-Garcia A; Vicario C; Gomez-Garcia PA; Cosma MP; Lakadamyali M
    Nucleic Acids Res; 2019 Sep; 47(16):8470-8484. PubMed ID: 31287868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast rDNA locus: a model system to study DNA repair in chromatin.
    Conconi A
    DNA Repair (Amst); 2005 Jul; 4(8):897-908. PubMed ID: 15996904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
    Katan-Khaykovich Y; Struhl K
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1296-301. PubMed ID: 21220302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstituted TAD-size chromatin fibers feature heterogeneous nucleosome clusters.
    Korolev N; Zinchenko A; Soman A; Chen Q; Wong SY; Berezhnoy NV; Basak R; van der Maarel JRC; van Noort J; Nordenskiöld L
    Sci Rep; 2022 Sep; 12(1):15558. PubMed ID: 36114220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of nucleosomal substructure in native chromatin by atomic force microscopy.
    Martin LD; Vesenka JP; Henderson E; Dobbs DL
    Biochemistry; 1995 Apr; 34(14):4610-6. PubMed ID: 7718563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sites of deposition of newly synthesized histone.
    Jackson V; Marshall S; Chalkley R
    Nucleic Acids Res; 1981 Sep; 9(18):4563-81. PubMed ID: 7301583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All roads lead to chromatin: multiple pathways for histone deposition.
    Li Q; Burgess R; Zhang Z
    Biochim Biophys Acta; 2013; 1819(3-4):238-46. PubMed ID: 24459726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast.
    Burgess RJ; Han J; Zhang Z
    J Biol Chem; 2014 Apr; 289(15):10518-10529. PubMed ID: 24573675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H3 and H4 tails play an important role in nucleosome phase separation.
    Hammonds EF; Harwig MC; Paintsil EA; Tillison EA; Hill RB; Morrison EA
    Biophys Chem; 2022 Apr; 283():106767. PubMed ID: 35158124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terpyridine Zn(II) Complexes with Azide Units for Visualization of Histone Deacetylation in Living Cells under STED Nanoscopy.
    Du W; Pan D; Xiang P; Xiong C; Zhang M; Zhang Q; Tian Y; Zhang Z; Chen B; Luo K; Gong Q; Tian X
    ACS Sens; 2021 Nov; 6(11):3978-3984. PubMed ID: 34498846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences.
    Allen MJ; Dong XF; O'Neill TE; Yau P; Kowalczykowski SC; Gatewood J; Balhorn R; Bradbury EM
    Biochemistry; 1993 Aug; 32(33):8390-6. PubMed ID: 8357790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.