These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 37221958)

  • 1. Modulating tumor mechanics with nanomedicine for cancer therapy.
    Zhao Q; Chen J; Zhang Z; Xiao C; Zeng H; Xu C; Yang X; Li Z
    Biomater Sci; 2023 Jun; 11(13):4471-4489. PubMed ID: 37221958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment.
    Zhang X; Zhang X; Yong T; Gan L; Yang X
    EBioMedicine; 2024 Jul; 105():105200. PubMed ID: 38876044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Softness-Aided Mild Hyperthermia Boosts Stiff Nanomedicine by Regulating Tumor Mechanics.
    Li Z; Zhu Y; Zhang Z; Wang H; Wang C; Xu C; Li S; Zhang S; Yang X; Li Z
    Adv Sci (Weinh); 2024 Jul; 11(26):e2306730. PubMed ID: 38704687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy.
    Wang C; Wang Q; Wang H; Li Z; Chen J; Zhang Z; Zeng H; Yu X; Yang X; Yang X; Li Z
    J Control Release; 2023 Jan; 353():391-410. PubMed ID: 36473606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy.
    Qin M; Xia H; Xu W; Chen B; Wang Y
    Adv Drug Deliv Rev; 2023 Dec; 203():115137. PubMed ID: 37949414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.
    Tian Y; Cheng T; Sun F; Zhou Y; Yuan C; Guo Z; Wang Z
    Adv Colloid Interface Sci; 2024 Apr; 326():103124. PubMed ID: 38461766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of engineering nanomedicines for tumor retention.
    Qian X; Xu X; Wu Y; Wang J; Li J; Chen S; Wen J; Li Y; Zhang Z
    J Control Release; 2022 Jun; 346():193-211. PubMed ID: 35447297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor Abnormality-Oriented Nanomedicine Design.
    Zhou Q; Xiang J; Qiu N; Wang Y; Piao Y; Shao S; Tang J; Zhou Z; Shen Y
    Chem Rev; 2023 Sep; 123(18):10920-10989. PubMed ID: 37713432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration.
    Guo J; Zeng H; Chen Y
    Mol Pharm; 2020 Apr; 17(4):1028-1048. PubMed ID: 32150417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy.
    Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z
    Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.