These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37222181)

  • 41. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzyme-linked immunosorbent assays (ELISA) based on thread, paper, and fabric.
    Gonzalez A; Gaines M; Gallegos LY; Guevara R; Gomez FA
    Electrophoresis; 2018 Feb; 39(3):476-484. PubMed ID: 29171063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection.
    Noviana E; Jain S; Hofstetter J; Geiss BJ; Dandy DS; Henry CS
    Anal Bioanal Chem; 2020 May; 412(13):3051-3061. PubMed ID: 32193587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Paper-Based Microfluidic Devices: Low-Cost Platforms for Rapid Biochemical Detection.
    Ünal B; Camci-Unal G; Mahmud K
    Mil Med; 2021 Jan; 186(Suppl 1):716-721. PubMed ID: 33499548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.
    Mao X; Ma Y; Zhang A; Zhang L; Zeng L; Liu G
    Anal Chem; 2009 Feb; 81(4):1660-8. PubMed ID: 19159221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay.
    Cornaglia M; Trouillon R; Tekin HC; Lehnert T; Gijs MA
    N Biotechnol; 2015 Sep; 32(5):433-40. PubMed ID: 25817550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood separation on microfluidic paper-based analytical devices.
    Songjaroen T; Dungchai W; Chailapakul O; Henry CS; Laiwattanapaisal W
    Lab Chip; 2012 Sep; 12(18):3392-8. PubMed ID: 22782449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mobile app-based quantitative scanometric analysis.
    Wong JX; Liu FS; Yu HZ
    Anal Chem; 2014 Dec; 86(24):11966-71. PubMed ID: 25420202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An enzymatic nucleic acid vertical flow assay.
    Tahmasebi M; Bamdad T; Svendsen WE; Forouzandeh-Moghadam M
    Anal Bioanal Chem; 2022 May; 414(12):3605-3615. PubMed ID: 35352165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mkit: A mobile nucleic acid assay based on a chitosan-modified minimalistic microfluidic chip (CM
    Yang K; Pan J; Deng G; Hua C; Zhu C; Liu Y; Zhu L
    Anal Chim Acta; 2023 May; 1253():341030. PubMed ID: 36965987
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A.
    Han SM; Cho JH; Cho IH; Paek EH; Oh HB; Kim BS; Ryu C; Lee K; Kim YK; Paek SH
    Anal Chim Acta; 2007 Mar; 587(1):1-8. PubMed ID: 17386746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing.
    Choi JR; Liu Z; Hu J; Tang R; Gong Y; Feng S; Ren H; Wen T; Yang H; Qu Z; Pingguan-Murphy B; Xu F
    Anal Chem; 2016 Jun; 88(12):6254-64. PubMed ID: 27012657
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics.
    Atabakhsh S; Haji Abbasali H; Jafarabadi Ashtiani S
    Talanta; 2024 May; 271():125695. PubMed ID: 38295445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. β-Cyclodextrin coated porous Pd@Au nanostructures with enhanced peroxidase-like activity for colorimetric and paper-based determination of glucose.
    Li F; Hu Y; Zhao A; Xi Y; Li Z; He J
    Mikrochim Acta; 2020 Jul; 187(8):425. PubMed ID: 32623601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A separation-free paper-based hydrogel device for one-step reactive oxygen species determination by a smartphone.
    Chu J; Zhang Y; Li J; Hong J; Sun L; Wei J
    J Mater Chem B; 2024 Jul; 12(30):7324-7333. PubMed ID: 38957936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic Paper-Based Sample Concentration Using Ion Concentration Polarization with Smartphone Detection.
    Li X; Niu Y; Chen Y; Wu D; Yi L; Qiu X
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.