BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37222269)

  • 1. Recent Developments in Engineered Magnesium Scaffolds for Bone Tissue Engineering.
    Dutta S; Roy M
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3010-3031. PubMed ID: 37222269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous magnesium-based scaffolds for tissue engineering.
    Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications.
    Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2.
    Kleer-Reiter N; Julmi S; Feichtner F; Waselau AC; Klose C; Wriggers P; Maier HJ; Meyer-Lindenberg A
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33827052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca
    Tang M; Yan Y; OuYang J; Yu K; Liu C; Zhou X; Wang Z; Deng Y; Shuai C
    J Appl Biomater Funct Mater; 2019; 17(2):2280800019857064. PubMed ID: 31597509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.
    Singh S; Vashisth P; Shrivastav A; Bhatnagar N
    J Mech Behav Biomed Mater; 2019 Jun; 94():54-62. PubMed ID: 30856480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds.
    Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N
    Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly porous titanium scaffolds for orthopaedic applications.
    Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering.
    Chen Y; Han P; Vandi LJ; Dehghan-Manshadi A; Humphry J; Kent D; Stefani I; Lee P; Heitzmann M; Cooper-White J; Dargusch M
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():160-165. PubMed ID: 30573237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering.
    Chen Y; Frith JE; Dehghan-Manshadi A; Attar H; Kent D; Soro NDM; Bermingham MJ; Dargusch MS
    J Mech Behav Biomed Mater; 2017 Nov; 75():169-174. PubMed ID: 28734258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.
    Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic Materials for Bone Repair.
    Fan L; Chen S; Yang M; Liu Y; Liu J
    Adv Healthc Mater; 2024 Jan; 13(3):e2302132. PubMed ID: 37883735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-cast 3D printing of magnesium scaffolds.
    Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J
    Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.