These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37222269)
1. Recent Developments in Engineered Magnesium Scaffolds for Bone Tissue Engineering. Dutta S; Roy M ACS Biomater Sci Eng; 2023 Jun; 9(6):3010-3031. PubMed ID: 37222269 [TBL] [Abstract][Full Text] [Related]
2. Porous magnesium-based scaffolds for tissue engineering. Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682 [TBL] [Abstract][Full Text] [Related]
3. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430 [TBL] [Abstract][Full Text] [Related]
4. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Kleer-Reiter N; Julmi S; Feichtner F; Waselau AC; Klose C; Wriggers P; Maier HJ; Meyer-Lindenberg A Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33827052 [TBL] [Abstract][Full Text] [Related]
6. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca Tang M; Yan Y; OuYang J; Yu K; Liu C; Zhou X; Wang Z; Deng Y; Shuai C J Appl Biomater Funct Mater; 2019; 17(2):2280800019857064. PubMed ID: 31597509 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application. Singh S; Vashisth P; Shrivastav A; Bhatnagar N J Mech Behav Biomed Mater; 2019 Jun; 94():54-62. PubMed ID: 30856480 [TBL] [Abstract][Full Text] [Related]
9. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185 [TBL] [Abstract][Full Text] [Related]
10. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration. Parai R; Bandyopadhyay-Ghosh S J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994 [TBL] [Abstract][Full Text] [Related]
11. Highly porous titanium scaffolds for orthopaedic applications. Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174 [TBL] [Abstract][Full Text] [Related]
12. A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering. Chen Y; Han P; Vandi LJ; Dehghan-Manshadi A; Humphry J; Kent D; Stefani I; Lee P; Heitzmann M; Cooper-White J; Dargusch M Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():160-165. PubMed ID: 30573237 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. Chen Y; Frith JE; Dehghan-Manshadi A; Attar H; Kent D; Soro NDM; Bermingham MJ; Dargusch MS J Mech Behav Biomed Mater; 2017 Nov; 75():169-174. PubMed ID: 28734258 [TBL] [Abstract][Full Text] [Related]
14. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756 [TBL] [Abstract][Full Text] [Related]
15. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
16. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086 [TBL] [Abstract][Full Text] [Related]
17. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
18. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
19. Metallic Materials for Bone Repair. Fan L; Chen S; Yang M; Liu Y; Liu J Adv Healthc Mater; 2024 Jan; 13(3):e2302132. PubMed ID: 37883735 [TBL] [Abstract][Full Text] [Related]
20. Solvent-cast 3D printing of magnesium scaffolds. Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]