These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37222269)
21. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. Liu J; Ruan J; Chang L; Yang H; Ruan W Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015 [TBL] [Abstract][Full Text] [Related]
22. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Bonithon R; Kao AP; Fernández MP; Dunlop JN; Blunn GW; Witte F; Tozzi G Acta Biomater; 2021 Jun; 127():338-352. PubMed ID: 33831571 [TBL] [Abstract][Full Text] [Related]
23. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
25. Magnesium-alloy rods reinforced bioglass bone cement composite scaffolds with cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone in vivo regeneration. Duan H; Cao C; Wang X; Tao J; Li C; Xin H; Yang J; Song Y; Ai F Sci Rep; 2020 Oct; 10(1):18193. PubMed ID: 33097806 [TBL] [Abstract][Full Text] [Related]
26. Additively manufactured BaTiO Mancuso E; Shah L; Jindal S; Serenelli C; Tsikriteas ZM; Khanbareh H; Tirella A Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112192. PubMed ID: 34082989 [TBL] [Abstract][Full Text] [Related]
27. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy. Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463 [TBL] [Abstract][Full Text] [Related]
28. Direct 3-D printing of Ti-6Al-4V/HA composite porous scaffolds for customized mechanical properties and biological functions. Yi T; Zhou C; Ma L; Wu L; Xu X; Gu L; Fan Y; Xian G; Fan H; Zhang X J Tissue Eng Regen Med; 2020 Mar; 14(3):486-496. PubMed ID: 32012461 [TBL] [Abstract][Full Text] [Related]
29. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds. Anita Lett J; Sagadevan S; Léonard E; Fatimah I; Motalib Hossain MA; Mohammad F; Al-Lohedan HA; Paiman S; Alshahateet SF; Abd Razak SI; Johan MR Artif Organs; 2021 Dec; 45(12):1501-1512. PubMed ID: 34309044 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
31. Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation. Bobe K; Willbold E; Haupt M; Reebmann M; Morgenthal I; Andersen O; Studnitzky T; Nellesen J; Tillmann W; Vogt C; Vano-Herrera K; Witte F Acta Biomater; 2022 Aug; 148():389-404. PubMed ID: 35691561 [TBL] [Abstract][Full Text] [Related]
33. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Dayaghi E; Bakhsheshi-Rad HR; Hamzah E; Akhavan-Farid A; Ismail AF; Aziz M; Abdolahi E Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():53-65. PubMed ID: 31147024 [TBL] [Abstract][Full Text] [Related]
34. Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element. Kalantari SM; Arabi H; Mirdamadi S; Mirsalehi SA J Mech Behav Biomed Mater; 2015 Aug; 48():183-191. PubMed ID: 25955560 [TBL] [Abstract][Full Text] [Related]
35. Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V. Shi C; Lu N; Qin Y; Liu M; Li H; Li H PLoS One; 2021; 16(3):e0247764. PubMed ID: 33661944 [TBL] [Abstract][Full Text] [Related]
36. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
38. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424 [TBL] [Abstract][Full Text] [Related]
39. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Barui S; Chatterjee S; Mandal S; Kumar A; Basu B Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959 [TBL] [Abstract][Full Text] [Related]
40. Recent Advancements in Materials and Coatings for Biomedical Implants. Amirtharaj Mosas KK; Chandrasekar AR; Dasan A; Pakseresht A; Galusek D Gels; 2022 May; 8(5):. PubMed ID: 35621621 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]