These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37222298)

  • 1. An atomistically informed multiscale approach to the intrusion and extrusion of water in hydrophobic nanopores.
    Paulo G; Gubbiotti A; Giacomello A
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37222298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrusion and extrusion of water in hydrophobic nanopores.
    Tinti A; Giacomello A; Grosu Y; Casciola CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10266-E10273. PubMed ID: 29138311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subnanometer Topological Tuning of the Liquid Intrusion/Extrusion Characteristics of Hydrophobic Micropores.
    Bushuev YG; Grosu Y; Chora Żewski MA; Meloni S
    Nano Lett; 2022 Mar; 22(6):2164-2169. PubMed ID: 35258978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores.
    Zajdel P; Madden DG; Babu R; Tortora M; Mirani D; Tsyrin NN; Bartolomé L; Amayuelas E; Fairen-Jimenez D; Lowe AR; Chorążewski M; Leao JB; Brown CM; Bleuel M; Stoudenets V; Casciola CM; Echeverría M; Bonilla F; Grancini G; Meloni S; Grosu Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(23):26699-713. PubMed ID: 35656844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore Morphology Determines Spontaneous Liquid Extrusion from Nanopores.
    Amabili M; Grosu Y; Giacomello A; Meloni S; Zaki A; Bonilla F; Faik A; Casciola CM
    ACS Nano; 2019 Feb; 13(2):1728-1738. PubMed ID: 30653291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Topology on Wetting and Drying of Hydrophobic Porous Materials.
    Bushuev YG; Grosu Y; Chorążewski MA; Meloni S
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30067-30079. PubMed ID: 35730678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrusion and extrusion of a liquid on nanostructured surfaces.
    Amabili M; Giacomello A; Meloni S; Casciola CM
    J Phys Condens Matter; 2017 Jan; 29(1):014003. PubMed ID: 27830654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the wetting-drying characteristics of hydrophobic metal organic frameworks via crystallite size: The role of hydrogen bonding between intruded and bulk liquid.
    Johnson LJW; Paulo G; Bartolomé L; Amayuelas E; Gubbiotti A; Mirani D; Le Donne A; López GA; Grancini G; Zajdel P; Meloni S; Giacomello A; Grosu Y
    J Colloid Interface Sci; 2023 Sep; 645():775-783. PubMed ID: 37172487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor nucleation paths in lyophobic nanopores.
    Tinti A; Giacomello A; Casciola CM
    Eur Phys J E Soft Matter; 2018 Apr; 41(4):52. PubMed ID: 29675633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials.
    Lu J; Jacobson LC; Perez Sirkin YA; Molinero V
    J Chem Theory Comput; 2017 Jan; 13(1):245-264. PubMed ID: 28068769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic correlation between water infiltration and framework hydrophilicity in MFI zeolites.
    Fasano M; Bevilacqua A; Chiavazzo E; Humplik T; Asinari P
    Sci Rep; 2019 Dec; 9(1):18429. PubMed ID: 31804543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models.
    Lynch CI; Klesse G; Rao S; Tucker SJ; Sansom MSP
    ACS Nano; 2021 Dec; 15(12):19098-19108. PubMed ID: 34784172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrusion of polyethylene glycol into solid-state nanopores.
    Sun Y; Xu C; Li Y
    RSC Adv; 2018 Feb; 8(17):9070-9073. PubMed ID: 35541879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner pore hydration free energy controls the activation of big potassium channels.
    Nordquist EB; Jia Z; Chen J
    Biophys J; 2023 Apr; 122(7):1158-1167. PubMed ID: 36774534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
    Trick JL; Aryal P; Tucker SJ; Sansom MS
    Biochem Soc Trans; 2015 Apr; 43(2):146-50. PubMed ID: 25849908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices.
    Fraux G; Coudert FX; Boutin A; Fuchs AH
    Chem Soc Rev; 2017 Dec; 46(23):7421-7437. PubMed ID: 29051934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Peptide Sequence on the LCST-Like Transition of Elastin-Like Peptides and Elastin-Like Peptide-Collagen-Like Peptide Conjugates: Simulations and Experiments.
    Prhashanna A; Taylor PA; Qin J; Kiick KL; Jayaraman A
    Biomacromolecules; 2019 Mar; 20(3):1178-1189. PubMed ID: 30715857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale investigation of chemical interference in proteins.
    Samiotakis A; Homouz D; Cheung MS
    J Chem Phys; 2010 May; 132(17):175101. PubMed ID: 20459186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.