These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37222343)

  • 1. Organic Afterglow Nanoparticles in Bioapplications.
    Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G
    Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications.
    Wu S; Li Y; Ding W; Xu L; Ma Y; Zhang L
    Nanomicro Lett; 2020 Mar; 12(1):70. PubMed ID: 34138268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging.
    Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent luminescence nanoparticles for cancer theranostics application.
    Liu N; Chen X; Sun X; Sun X; Shi J
    J Nanobiotechnology; 2021 Apr; 19(1):113. PubMed ID: 33879169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics.
    Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K
    Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots.
    Ma G; Dirak M; Liu Z; Jiang D; Wang Y; Xiang C; Zhang Y; Luo Y; Gong P; Cai L; Kolemen S; Zhang P
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202400658. PubMed ID: 38446006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in near-infrared I/II persistent luminescent nanoparticles for biosensing and bioimaging in cancer analysis.
    Chan MH; Chang YC
    Anal Bioanal Chem; 2024 Jul; 416(17):3887-3905. PubMed ID: 38592442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescence nanomaterials for biosensing applications.
    Kumar V; Bhatt D; Saruchi ; Pandey S
    Luminescence; 2023 Jul; 38(7):1011-1025. PubMed ID: 36042553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles.
    Ma Q; Wang J; Li Z; Lv X; Liang L; Yuan Q
    Small; 2019 Aug; 15(32):e1804969. PubMed ID: 30761729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanide Inorganic Nanoparticles Enhance Semiconducting Polymer Nanoparticles Afterglow Luminescence for In Vivo Afterglow/Magnetic Resonance Imaging.
    Wei HL; Zhang Q; Deng Z; Guan G; Dong Z; Cao H; Liang P; Lu D; Liu S; Yin X; Song G; Huan S; Zhang XB
    Anal Chem; 2024 May; 96(19):7697-7705. PubMed ID: 38697043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in biomedical applications of persistent luminescence nanoparticles.
    Wang J; Ma Q; Wang Y; Shen H; Yuan Q
    Nanoscale; 2017 May; 9(19):6204-6218. PubMed ID: 28466913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors.
    Xie C; Zhen X; Miao Q; Lyu Y; Pu K
    Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies.
    Wang J; Li J; Yu J; Zhang H; Zhang B
    ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy.
    Zhen X; Xie C; Pu K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3938-3942. PubMed ID: 29527761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging.
    Xu Y; Yang W; Yao D; Bian K; Zeng W; Liu K; Wang D; Zhang B
    Chem Sci; 2020 Jan; 11(2):419-428. PubMed ID: 32190262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.