These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37222431)

  • 21. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb.
    Carey RM; Wachowiak M
    J Neurosci; 2011 Jul; 31(29):10615-26. PubMed ID: 21775605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus.
    Liu A; Savya S; Urban NN
    J Neurosci; 2016 Nov; 36(46):11646-11653. PubMed ID: 27852773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells.
    Burton SD; Urban NN
    J Physiol; 2014 May; 592(10):2097-118. PubMed ID: 24614745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons.
    Sanz Diez A; Najac M; De Saint Jan D
    J Physiol; 2019 May; 597(9):2547-2563. PubMed ID: 30920662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses.
    Dasgupta D; Warner TPA; Erskine A; Schaefer AT
    J Neurosci; 2022 May; 42(21):4278-4296. PubMed ID: 35440491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.
    Liu S; Shipley MT
    J Neurosci; 2008 Oct; 28(41):10311-22. PubMed ID: 18842890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular and Synaptic Mechanisms That Differentiate Mitral Cells and Superficial Tufted Cells Into Parallel Output Channels in the Olfactory Bulb.
    Jones S; Zylberberg J; Schoppa N
    Front Cell Neurosci; 2020; 14():614377. PubMed ID: 33414707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of inhibition in the rat olfactory bulb external plexiform layer.
    Ezeh PI; Wellis DP; Scott JW
    J Neurophysiol; 1993 Jul; 70(1):263-74. PubMed ID: 8395579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged
    Short SM; Wachowiak M
    eNeuro; 2019; 6(3):. PubMed ID: 31209151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals.
    Ennis M; Zhou FM; Ciombor KJ; Aroniadou-Anderjaska V; Hayar A; Borrelli E; Zimmer LA; Margolis F; Shipley MT
    J Neurophysiol; 2001 Dec; 86(6):2986-97. PubMed ID: 11731555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range GABAergic projections contribute to cortical feedback control of sensory processing.
    Mazo C; Nissant A; Saha S; Peroni E; Lledo PM; Lepousez G
    Nat Commun; 2022 Nov; 13(1):6879. PubMed ID: 36371430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb.
    Lagier S; Carleton A; Lledo PM
    J Neurosci; 2004 May; 24(18):4382-92. PubMed ID: 15128852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reciprocal Inhibitory Glomerular Circuits Contribute to Excitation-Inhibition Balance in the Mouse Olfactory Bulb.
    Shao Z; Liu S; Zhou F; Puche AC; Shipley MT
    eNeuro; 2019; 6(3):. PubMed ID: 31147391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb.
    Phillips ME; Sachdev RN; Willhite DC; Shepherd GM
    J Neurosci; 2012 Jan; 32(1):85-98. PubMed ID: 22219272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.