BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37222704)

  • 1. Synergistic Binding of ATP and Nucleic Acids Necessitates UPF1's ATPase Functional Cycle.
    Sun B; Liu T; Zhang M; Li S
    J Chem Inf Model; 2023 Jun; 63(11):3474-3485. PubMed ID: 37222704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity.
    Lee SR; Pratt GA; Martinez FJ; Yeo GW; Lykke-Andersen J
    Mol Cell; 2015 Aug; 59(3):413-25. PubMed ID: 26253027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains.
    Fiorini F; Boudvillain M; Le Hir H
    Nucleic Acids Res; 2013 Feb; 41(4):2404-15. PubMed ID: 23275559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA-binding protein PTBP1 promotes ATPase-dependent dissociation of the RNA helicase UPF1 to protect transcripts from nonsense-mediated mRNA decay.
    Fritz SE; Ranganathan S; Wang CD; Hogg JR
    J Biol Chem; 2020 Aug; 295(33):11613-11625. PubMed ID: 32571872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner.
    Gowravaram M; Bonneau F; Kanaan J; Maciej VD; Fiorini F; Raj S; Croquette V; Le Hir H; Chakrabarti S
    Nucleic Acids Res; 2018 Mar; 46(5):2648-2659. PubMed ID: 29378013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency.
    Chapman JH; Youle AM; Grimme AL; Neuman KC; Hogg JR
    Nucleic Acids Res; 2024 May; 52(9):5376-5391. PubMed ID: 38412299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Effects of Cancer Associated Mutations at the UPF2 and ATP-Binding Sites of NMD Master Regulator: UPF1.
    Kalathiya U; Padariya M; Pawlicka K; Verma CS; Houston D; Hupp TR; Alfaro JA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31718065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation.
    Kurosaki T; Li W; Hoque M; Popp MW; Ermolenko DN; Tian B; Maquat LE
    Genes Dev; 2014 Sep; 28(17):1900-16. PubMed ID: 25184677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay.
    Chapman JH; Craig JM; Wang CD; Gundlach JH; Neuman KC; Hogg JR
    Nucleic Acids Res; 2022 Nov; 50(20):11876-11894. PubMed ID: 36370101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2.
    Chakrabarti S; Jayachandran U; Bonneau F; Fiorini F; Basquin C; Domcke S; Le Hir H; Conti E
    Mol Cell; 2011 Mar; 41(6):693-703. PubMed ID: 21419344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein.
    Weng Y; Czaplinski K; Peltz SW
    Mol Cell Biol; 1996 Oct; 16(10):5477-90. PubMed ID: 8816461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of the RNA helicase UPF1 involved in nonsense-mediated mRNA decay.
    Fiorini F; Bonneau F; Le Hir H
    Methods Enzymol; 2012; 511():255-74. PubMed ID: 22713324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay.
    Bhattacharya A; Czaplinski K; Trifillis P; He F; Jacobson A; Peltz SW
    RNA; 2000 Sep; 6(9):1226-35. PubMed ID: 10999600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the 'Regulatory Loop'.
    Padariya M; Fahraeus R; Hupp T; Kalathiya U
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP hydrolysis by UPF1 is required for efficient translation termination at premature stop codons.
    Serdar LD; Whiteside DL; Baker KE
    Nat Commun; 2016 Dec; 7():14021. PubMed ID: 28008922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional insights into the human Upf1 helicase core.
    Cheng Z; Muhlrad D; Lim MK; Parker R; Song H
    EMBO J; 2007 Jan; 26(1):253-64. PubMed ID: 17159905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome-bound Upf1 forms distinct 80S complexes and conducts mRNA surveillance.
    Ganesan R; Mangkalaphiban K; Baker RE; He F; Jacobson A
    RNA; 2022 Dec; 28(12):1621-1642. PubMed ID: 36192133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of phosphorylation- and RNA-dependent UPF1 interactors by quantitative proteomics.
    Flury V; Restuccia U; Bachi A; Mühlemann O
    J Proteome Res; 2014 Jun; 13(6):3038-53. PubMed ID: 24762188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.
    Fiorini F; Robin JP; Kanaan J; Borowiak M; Croquette V; Le Hir H; Jalinot P; Mocquet V
    Nat Commun; 2018 Jan; 9(1):431. PubMed ID: 29382845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of RNA-binding properties of the RNA helicase UPF1 by its activator UPF2.
    Xue G; Maciej VD; Machado de Amorim A; Pak M; Jayachandran U; Chakrabarti S
    RNA; 2023 Feb; 29(2):178-187. PubMed ID: 36456182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.