BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3722280)

  • 1. The role of microfilaments in cytoplasmic streaming in Drosophila follicles.
    Gutzeit HO
    J Cell Sci; 1986 Feb; 80():159-69. PubMed ID: 3722280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila.
    Gutzeit HO
    Eur J Cell Biol; 1990 Dec; 53(2):349-56. PubMed ID: 2081548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo.
    von Dassow G; Schubiger G
    J Cell Biol; 1994 Dec; 127(6 Pt 1):1637-53. PubMed ID: 7798318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth.
    Riparbelli MG; Callaini G
    Cell Motil Cytoskeleton; 1995; 31(4):298-306. PubMed ID: 7553916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy.
    Bohrmann J; Biber K
    J Cell Sci; 1994 Apr; 107 ( Pt 4)():849-58. PubMed ID: 8056841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F-actin rings are associated with the ring canals of the Drosophila egg chamber.
    Warn RM; Gutzeit HO; Smith L; Warn A
    Exp Cell Res; 1985 Apr; 157(2):355-63. PubMed ID: 4038943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes.
    Serbus LR; Cha BJ; Theurkauf WE; Saxton WM
    Development; 2005 Aug; 132(16):3743-52. PubMed ID: 16077093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of microfilament disrupters on microfilament distribution and morphology in maize root cells.
    Vaughan MA; Vaughn KC
    Histochemistry; 1987; 87(2):129-37. PubMed ID: 3623996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stage-specific apoptotic patterns during Drosophila oogenesis.
    Nezis IP; Stravopodis DJ; Papassideri I; Robert-Nicoud M; Margaritis LH
    Eur J Cell Biol; 2000 Sep; 79(9):610-20. PubMed ID: 11043402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous actin in paramecium cells: functional and structural changes correlated with phalloidin affinity labeling in vivo.
    Kersken H; Momayezi M; Braun C; Plattner H
    J Histochem Cytochem; 1986 Apr; 34(4):455-65. PubMed ID: 3512697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis.
    Minestrini G; Máthé E; Glover DM
    J Cell Sci; 2002 Feb; 115(Pt 4):725-36. PubMed ID: 11865028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin cytoskeleton reorganization of the apoptotic nurse cells during the late developmental stages of oogenesis in Dacus oleae.
    Nezis IP; Stravopodis DJ; Papassideri I; Margaritis LH
    Cell Motil Cytoskeleton; 2001 Mar; 48(3):224-33. PubMed ID: 11223953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of microfilament patterns in nurse cells of different insects with polytrophic and telotrophic ovarioles.
    Gutzeit HO; Huebner E
    J Embryol Exp Morphol; 1986 Apr; 93():291-301. PubMed ID: 3734686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells.
    Meindl U; Zhang D; Hepler PK
    J Cell Sci; 1994 Jul; 107 ( Pt 7)():1929-34. PubMed ID: 7983159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization and in vitro activity of microfilament bundles associated with the basement membrane of Drosophila follicles.
    Gutzeit HO
    Acta Histochem Suppl; 1991; 41():201-10. PubMed ID: 1811256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of actin cytoskeleton at the growing end of the cleavage furrow of Xenopus egg during cytokinesis.
    Noguchi T; Mabuchi I
    J Cell Sci; 2001 Jan; 114(Pt 2):401-12. PubMed ID: 11148141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.
    Spracklen AJ; Fagan TN; Lovander KE; Tootle TL
    Dev Biol; 2014 Sep; 393(2):209-226. PubMed ID: 24995797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of microtubules in the differentiation of ovarian follicles during vitellogenesis inDrosophila.
    Gutzeit H
    Rouxs Arch Dev Biol; 1986 Apr; 195(3):173-181. PubMed ID: 28305252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport.
    Theurkauf WE; Smiley S; Wong ML; Alberts BM
    Development; 1992 Aug; 115(4):923-36. PubMed ID: 1451668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.