BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37222930)

  • 1. X-ray image decomposition for improved magnetic navigation.
    Xia W; Xing S; Jarayathne U; Pardasani U; Peters T; Chen E
    Int J Comput Assist Radiol Surg; 2023 Jul; 18(7):1225-1233. PubMed ID: 37222930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D ring artifacts removal algorithm combined low-rank tensor decomposition with spatial-sequential total variation regularization and its application in phase-contrast microtomography.
    Li Y; Zhao Y; Ji D; Han S; Zheng M; Lv W; Xin X; Li F; Zhao X; Liu D; Hu C
    Med Phys; 2022 Jan; 49(1):393-410. PubMed ID: 34854084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast single image super-resolution using estimated low-frequency k-space data in MRI.
    Luo J; Mou Z; Qin B; Li W; Yang F; Robini M; Zhu Y
    Magn Reson Imaging; 2017 Jul; 40():1-11. PubMed ID: 28366758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pix2xray: converting RGB images into X-rays using generative adversarial networks.
    Haiderbhai M; Ledesma S; Lee SC; Seibold M; Fürnstahl P; Navab N; Fallavollita P
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):973-980. PubMed ID: 32342258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-based motion artifact reduction on liver dynamic contrast enhanced MRI.
    Wu Y; Liu J; White GM; Deng J
    Phys Med; 2023 Jan; 105():102509. PubMed ID: 36565556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved GAN: Using a transformer module generator approach for material decomposition.
    Wang G; Liu Z; Huang Z; Zhang N; Luo H; Liu L; Shen H; Che C; Niu T; Liang D; Luo D; Hu Z
    Comput Biol Med; 2022 Oct; 149():105952. PubMed ID: 36029750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of MR surface coils on PET quantification.
    MacDonald LR; Kohlmyer S; Liu C; Lewellen TK; Kinahan PE
    Med Phys; 2011 Jun; 38(6):2948-56. PubMed ID: 21815368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient specific prior cross attention for kV decomposition in paraspinal motion tracking.
    He X; Cai W; Li F; Fan Q; Zhang P; Cuaron JJ; Cerviño LI; Moran JM; Li X; Li T
    Med Phys; 2023 Sep; 50(9):5343-5353. PubMed ID: 37538040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Innovative Low-dose CT Inpainting Algorithm based on Limited-angle Imaging Inpainting Model.
    Zhang Z; Yang M; Li H; Chen S; Wang J; Xu L
    J Xray Sci Technol; 2023; 31(1):131-152. PubMed ID: 36373341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse-domain regularized stripe decomposition combined with guided-image filtering for ring artifact removal in propagation-based x-ray phase-contrast CT.
    Li Y; Zhao Y; Ji D; Lv W; Xin X; Zhao X; Liu D; Ouyang Z; Hu C
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33878737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Innovative Metal Artifact Reduction Algorithm based on Res-U-Net GANs.
    Zhang Z; Yang M; Xu L; Yang J; Guo H; Wang J
    Curr Med Imaging; 2023; 19(13):1549-1560. PubMed ID: 36799418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies.
    Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain.
    Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Jun; 20(2):190-203. PubMed ID: 32611937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring artifact removal for differential phase-contrast X-ray computed tomography using a conditional generative adversarial network.
    Huang Z; Sunaguchi N; Shimao D; Enomoto A; Ichihara S; Yuasa T; Ando M
    Int J Comput Assist Radiol Surg; 2021 Nov; 16(11):1889-1900. PubMed ID: 34652605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.