These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37223413)

  • 21. Codoped Phosphotungstate as an Efficient Heterogeneous Catalyst for the Synthesis of
    Zhou X; He P; Zhang C
    ACS Omega; 2020 May; 5(20):11529-11534. PubMed ID: 32478242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexagonal BaTiO
    Miyazaki M; Ogasawara K; Nakao T; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2022 Apr; 144(14):6453-6464. PubMed ID: 35380439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers.
    Peng X; Liu HX; Zhang Y; Huang ZQ; Yang L; Jiang Y; Wang X; Zheng L; Chang C; Au CT; Jiang L; Li J
    Chem Sci; 2021 Apr; 12(20):7125-7137. PubMed ID: 34123340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-Pot Synthesis of Ruthenium-Based Nanocatalyst Using Reduced Graphene Oxide as Matrix for Electrochemical Synthesis of Ammonia.
    Sun W; Sahin NE; Sun D; Wu X; Munoz C; Thakare J; Aulich T; Zhang J; Hou X; Oncel N; Pierce D; Zhao JX
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1115-1128. PubMed ID: 36575897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring widely used ammonia synthesis catalysts for H and N poisoning resistance.
    Ghuman KK; Tozaki K; Sadakiyo M; Kitano S; Oyabe T; Yamauchi M
    Phys Chem Chem Phys; 2019 Feb; 21(9):5117-5122. PubMed ID: 30766991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Pore Confinement of NaNH
    Chang F; Wu H; Pluijm RV; Guo J; Ngene P; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(35):21487-21496. PubMed ID: 31523341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of nitrogen co-doping with ruthenium on the catalytic performance of Ba/Ru-N-MC catalysts for ammonia synthesis.
    Ma Y; Lan G; Wang X; Zhang G; Han W; Tang H; Liu H; Li Y
    RSC Adv; 2019 Jul; 9(38):22045-22052. PubMed ID: 35518881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxyhydrides of (Ca,Sr,Ba)TiO3 perovskite solid solutions.
    Sakaguchi T; Kobayashi Y; Yajima T; Ohkura M; Tassel C; Takeiri F; Mitsuoka S; Ohkubo H; Yamamoto T; Kim Je; Tsuji N; Fujihara A; Matsushita Y; Hester J; Avdeev M; Ohoyama K; Kageyama H
    Inorg Chem; 2012 Nov; 51(21):11371-6. PubMed ID: 23082857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Properties of the Hydrogen-Titanium System.
    Billeter E; Łodziana Z; Borgschulte A
    J Phys Chem C Nanomater Interfaces; 2021 Nov; 125(45):25339-25349. PubMed ID: 34824662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high performance barium-promoted cobalt catalyst supported on magnesium-lanthanum mixed oxide for ammonia synthesis.
    Ronduda H; Zybert M; Patkowski W; Ostrowski A; Jodłowski P; Szymański D; Kępiński L; Raróg-Pilecka W
    RSC Adv; 2021 Apr; 11(23):14218-14228. PubMed ID: 35423907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-temperature SCR of NO
    Yu C; Dong L; Chen F; Liu X; Huang B
    Environ Technol; 2017 Apr; 38(8):1030-1042. PubMed ID: 27494642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane.
    BaĞuÇ İB; Yurderİ M; Saydan KanberoĞlu G; Bulut A
    Turk J Chem; 2020; 44(2):364-377. PubMed ID: 33488163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magneli-Phase Titanium Suboxide Nanocrystals as Highly Active Catalysts for Selective Acetalization of Furfural.
    Nagao M; Misu S; Hirayama J; Otomo R; Kamiya Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2539-2547. PubMed ID: 31868342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic Performance and Near-Surface X-ray Characterization of Titanium Hydride Electrodes for the Electrochemical Nitrate Reduction Reaction.
    Liu MJ; Guo J; Hoffman AS; Stenlid JH; Tang MT; Corson ER; Stone KH; Abild-Pedersen F; Bare SR; Tarpeh WA
    J Am Chem Soc; 2022 Apr; 144(13):5739-5744. PubMed ID: 35315649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co nanoparticles supported on mixed magnesium-lanthanum oxides: effect of calcium and barium addition on ammonia synthesis catalyst performance.
    Ronduda H; Zybert M; Patkowski W; Moszyński D; Albrecht A; Sobczak K; Małolepszy A; Raróg-Pilecka W
    RSC Adv; 2023 Jan; 13(7):4787-4802. PubMed ID: 36760280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.
    Yue C; Qiu L; Trudeau M; Antonelli D
    Inorg Chem; 2007 Jun; 46(12):5084-92. PubMed ID: 17497850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of Mg-doping effect on the activity and P tolerance of V
    Qi L; Li S; Wang W; Li J
    Environ Sci Pollut Res Int; 2023 May; 30(22):62880-62891. PubMed ID: 36952161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts.
    Kitano M; Inoue Y; Ishikawa H; Yamagata K; Nakao T; Tada T; Matsuishi S; Yokoyama T; Hara M; Hosono H
    Chem Sci; 2016 Jul; 7(7):4036-4043. PubMed ID: 30155046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.