BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37224004)

  • 1. Advancing Computational Toxicology by Interpretable Machine Learning.
    Jia X; Wang T; Zhu H
    Environ Sci Technol; 2023 Nov; 57(46):17690-17706. PubMed ID: 37224004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century.
    Choudhuri S; Patton GW; Chanderbhan RF; Mattia A; Klaassen CD
    Toxicol Sci; 2018 Jan; 161(1):5-22. PubMed ID: 28973688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives.
    Wu X; Zhou Q; Mu L; Hu X
    J Hazard Mater; 2022 Sep; 438():129487. PubMed ID: 35816807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods.
    Zhao P; Peng Y; Xu X; Wang Z; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2021 Oct; 41(10):1518-1526. PubMed ID: 33469990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the human hazard characterization of chemicals: a Tox21 update.
    Tice RR; Austin CP; Kavlock RJ; Bucher JR
    Environ Health Perspect; 2013 Jul; 121(7):756-65. PubMed ID: 23603828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in data interoperability to support computational toxicology and chemical safety evaluation.
    Watford S; Edwards S; Angrish M; Judson RS; Paul Friedman K
    Toxicol Appl Pharmacol; 2019 Oct; 380():114707. PubMed ID: 31404555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of animal studies to determine the effects and human risks of environmental toxicants (drugs, chemicals, and physical agents).
    Brent RL
    Pediatrics; 2004 Apr; 113(4 Suppl):984-95. PubMed ID: 15060191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
    Zhang J; Hsieh JH; Zhu H
    PLoS One; 2014; 9(6):e99863. PubMed ID: 24950175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Environmental Disease Network: A computational model to assess toxicology of contaminants.
    Taboureau O; Audouze K
    ALTEX; 2017; 34(2):289-300. PubMed ID: 27768803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of machine learning and deep learning models for toxicity prediction.
    Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable machine learning for genomics.
    Watson DS
    Hum Genet; 2022 Sep; 141(9):1499-1513. PubMed ID: 34669035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in computational toxicology.
    Ekins S
    J Pharmacol Toxicol Methods; 2014; 69(2):115-40. PubMed ID: 24361690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.
    Guo Y; Zhao L; Zhang X; Zhu H
    Ecotoxicol Environ Saf; 2019 Aug; 178():178-187. PubMed ID: 31004930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
    Ciallella HL; Russo DP; Aleksunes LM; Grimm FA; Zhu H
    Lab Invest; 2021 Apr; 101(4):490-502. PubMed ID: 32778734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives.
    Rusyn I; Greene N
    Toxicol Sci; 2018 Feb; 161(2):276-284. PubMed ID: 29378069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications.
    Jeong J; Choi J
    Environ Sci Technol; 2022 Jun; 56(12):7532-7543. PubMed ID: 35666838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening the Black Box: Interpretable Machine Learning for Geneticists.
    Azodi CB; Tang J; Shiu SH
    Trends Genet; 2020 Jun; 36(6):442-455. PubMed ID: 32396837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The development of computational toxicology and application in risk assessment of chemicals].
    Zhang R; Chen W
    Zhonghua Yu Fang Yi Xue Za Zhi; 2019 Aug; 53(8):843-850. PubMed ID: 31378047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hazard identification by methods of animal-based toxicology.
    Barlow SM; Greig JB; Bridges JW; Carere A; Carpy AJ; Galli CL; Kleiner J; Knudsen I; Koëter HB; Levy LS; Madsen C; Mayer S; Narbonne JF; Pfannkuch F; Prodanchuk MG; Smith MR; Steinberg P
    Food Chem Toxicol; 2002; 40(2-3):145-91. PubMed ID: 11893397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.