BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 37224019)

  • 1. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response.
    Xu M; Lin L; Ram BM; Shriwas O; Chuang KH; Dai S; Su KH; Tang Z; Dai C
    Cell Rep; 2023 Jun; 42(6):112557. PubMed ID: 37224019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates.
    Fujimoto M; Takii R; Nakai A
    Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding.
    Dastidar SG; De Kumar B; Lauckner B; Parrello D; Perley D; Vlasenok M; Tyagi A; Koney NK; Abbas A; Nechaev S
    Nat Commun; 2023 Nov; 14(1):7420. PubMed ID: 37973875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells.
    Fritah S; Col E; Boyault C; Govin J; Sadoul K; Chiocca S; Christians E; Khochbin S; Jolly C; Vourc'h C
    Mol Biol Cell; 2009 Dec; 20(23):4976-84. PubMed ID: 19793920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock.
    Zhang H; Shao S; Zeng Y; Wang X; Qin Y; Ren Q; Xiang S; Wang Y; Xiao J; Sun Y
    Nat Cell Biol; 2022 Mar; 24(3):340-352. PubMed ID: 35256776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the
    Janus P; Kuś P; Vydra N; Toma-Jonik A; Stokowy T; Mrowiec K; Wojtaś B; Gielniewski B; Widłak W
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock transcription factor 1 is SUMOylated in the activated trimeric state.
    Kmiecik SW; Drzewicka K; Melchior F; Mayer MP
    J Biol Chem; 2021; 296():100324. PubMed ID: 33493517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSF1, Aging, and Neurodegeneration.
    Liu AY; Minetti CA; Remeta DP; Breslauer KJ; Chen KY
    Adv Exp Med Biol; 2023; 1409():23-49. PubMed ID: 35995906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia.
    Kus-Liśkiewicz M; Polańska J; Korfanty J; Olbryt M; Vydra N; Toma A; Widłak W
    BMC Genomics; 2013 Jul; 14():456. PubMed ID: 23834426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters.
    Kim JA; Kim Y; Kwon BM; Han DC
    J Biol Chem; 2013 Oct; 288(40):28713-26. PubMed ID: 23983126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription.
    Neueder A; Achilli F; Moussaoui S; Bates GP
    J Biol Chem; 2014 Jul; 289(29):19894-906. PubMed ID: 24855652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
    Ray J; Munn PR; Vihervaara A; Lewis JJ; Ozer A; Danko CG; Lis JT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19431-19439. PubMed ID: 31506350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development.
    Chin Y; Gumilar KE; Li XG; Tjokroprawiro BA; Lu CH; Lu J; Zhou M; Sobol RW; Tan M
    Theranostics; 2023; 13(7):2281-2300. PubMed ID: 37153737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mediator subunit MED12 promotes formation of HSF1 condensates on heat shock response element arrays in heat-shocked cells.
    Okada M; Fujimoto M; Srivastava P; Pandey A; Takii R; Nakai A
    FEBS Lett; 2023 Jul; 597(13):1702-1717. PubMed ID: 36971000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MED12 interacts with the heat-shock transcription factor HSF1 and recruits CDK8 to promote the heat-shock response in mammalian cells.
    Srivastava P; Takii R; Okada M; Fujimoto M; Nakai A
    FEBS Lett; 2021 Jul; 595(14):1933-1948. PubMed ID: 34056708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells.
    Vydra N; Janus P; Kus P; Stokowy T; Mrowiec K; Toma-Jonik A; Krzywon A; Cortez AJ; Wojtas B; Gielniewski B; Jaksik R; Kimmel M; Widlak W
    Elife; 2021 Nov; 10():. PubMed ID: 34783649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock about heat shock in cancer.
    de Billy E; Travers J; Workman P
    Oncotarget; 2012 Aug; 3(8):741-3. PubMed ID: 22964629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long noncoding RNA
    Lellahi SM; Rosenlund IA; Hedberg A; Kiær LT; Mikkola I; Knutsen E; Perander M
    J Biol Chem; 2018 Dec; 293(49):18965-18976. PubMed ID: 30305397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.