These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37224104)
1. Ready-To-Use and Rapidly Biodegradable Magnesium Phosphate Bone Cement: In Vivo Evaluation in Sheep. Schröter L; Kaiser F; Preißler AL; Wohlfahrt P; Küppers O; Gbureck U; Ignatius A Adv Healthc Mater; 2023 Oct; 12(26):e2300914. PubMed ID: 37224104 [TBL] [Abstract][Full Text] [Related]
2. Accelerated bone regeneration through rational design of magnesium phosphate cements. Kaiser F; Schröter L; Stein S; Krüger B; Weichhold J; Stahlhut P; Ignatius A; Gbureck U Acta Biomater; 2022 Jun; 145():358-371. PubMed ID: 35443213 [TBL] [Abstract][Full Text] [Related]
3. Exploring the potential of magnesium oxychloride, an amorphous magnesium phosphate, and newberyite as possible bone cement candidates. Kaiser F; Schröter L; Wohlfahrt P; Geroneit I; Murek J; Stahlhut P; Weichhold J; Ignatius A; Gbureck U J Biomater Appl; 2023 Sep; 38(3):438-454. PubMed ID: 37525613 [TBL] [Abstract][Full Text] [Related]
4. Bone regeneration capacity of magnesium phosphate cements in a large animal model. Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility. Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis, setting properties and in vitro characterization of wollastonite/newberyite bone cement mixtures. Sopcak T; Medvecky L; Giretova M; Stulajterova R; Durisin J J Biomater Appl; 2018 Feb; 32(7):871-885. PubMed ID: 29224421 [TBL] [Abstract][Full Text] [Related]
7. Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics. Schröter L; Kaiser F; Küppers O; Stein S; Krüger B; Wohlfahrt P; Geroneit I; Stahlhut P; Gbureck U; Ignatius A Dent Mater; 2024 Mar; 40(3):508-519. PubMed ID: 38199893 [TBL] [Abstract][Full Text] [Related]
8. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration. Gelli R; Mati L; Ridi F; Baglioni P Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():248-255. PubMed ID: 30573247 [TBL] [Abstract][Full Text] [Related]
9. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Wu F; Su J; Wei J; Guo H; Liu C Biomed Mater; 2008 Dec; 3(4):044105. PubMed ID: 19029607 [TBL] [Abstract][Full Text] [Related]
10. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
11. Injectability and mechanical properties of magnesium phosphate cements. Moseke C; Saratsis V; Gbureck U J Mater Sci Mater Med; 2011 Dec; 22(12):2591-8. PubMed ID: 21915697 [TBL] [Abstract][Full Text] [Related]
12. Formation and properties of magnesium-ammonium-phosphate hexahydrate biocements in the Ca-Mg-PO4 system. Vorndran E; Ewald A; Müller FA; Zorn K; Kufner A; Gbureck U J Mater Sci Mater Med; 2011 Mar; 22(3):429-36. PubMed ID: 21221732 [TBL] [Abstract][Full Text] [Related]
13. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material. Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082 [TBL] [Abstract][Full Text] [Related]
14. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480 [TBL] [Abstract][Full Text] [Related]
15. An injectable bioactive poly(γ-glutamic acid) modified magnesium phosphate bone cement for bone regeneration. Yang Q; Zhu J; Chen J; Zhu P; Gao C J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35316. PubMed ID: 37578036 [TBL] [Abstract][Full Text] [Related]
16. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
17. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. Klammert U; Vorndran E; Reuther T; Müller FA; Zorn K; Gbureck U J Mater Sci Mater Med; 2010 Nov; 21(11):2947-53. PubMed ID: 20740307 [TBL] [Abstract][Full Text] [Related]
18. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem. Zhou H; Agarwal AK; Goel VK; Bhaduri SB Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4288-94. PubMed ID: 23910345 [TBL] [Abstract][Full Text] [Related]
19. Magnesium phosphate based cement with improved setting, strength and cytocompatibility properties by adding Ca(H Yu S; Liu L; Xu C; Dai H J Mech Behav Biomed Mater; 2019 Mar; 91():229-236. PubMed ID: 30597376 [TBL] [Abstract][Full Text] [Related]
20. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Meng D; Dong L; Wen Y; Xie Q Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]