These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37224271)

  • 21. Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose.
    Verma M; Bhat PJ; Venkatesh KV
    J Biol Chem; 2003 Dec; 278(49):48764-9. PubMed ID: 14512430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis.
    Kulkarni VV; Kareenhalli V; Malakar P; Pao LY; Safonov MG; Viswanathan GA
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S43. PubMed ID: 20122217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mediator acts upstream of the transcriptional activator Gal4.
    Ang K; Ee G; Ang E; Koh E; Siew WL; Chan YM; Nur S; Tan YS; Lehming N
    PLoS Biol; 2012; 10(3):e1001290. PubMed ID: 22479149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A double role of the Gal80 N terminus in activation of transcription by Gal4p.
    Reinhardt-Tews A; Krutyhołowa R; Günzel C; Roehl C; Glatt S; Breunig KD
    Life Sci Alliance; 2020 Dec; 3(12):. PubMed ID: 33037058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-pathway regulation in Saccharomyces cerevisiae: activation of the proline utilization pathway by Ga14p in vivo.
    D'Alessio M; Brandriss MC
    J Bacteriol; 2000 Jul; 182(13):3748-53. PubMed ID: 10850990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation.
    Lavy T; Kumar PR; He H; Joshua-Tor L
    Genes Dev; 2012 Feb; 26(3):294-303. PubMed ID: 22302941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Venkatesh KV
    Biochem J; 2005 Jun; 388(Pt 3):843-9. PubMed ID: 15698380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression.
    Melcher K; Xu HE
    EMBO J; 2001 Feb; 20(4):841-51. PubMed ID: 11179228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis.
    Zenke FT; Kapp L; Breunig KD
    Biol Chem; 1999 Apr; 380(4):419-30. PubMed ID: 10355628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of Ga14p at a single C-terminal residue is necessary for galactose-inducible transcription.
    Sadowski I; Costa C; Dhanawansa R
    Mol Cell Biol; 1996 Sep; 16(9):4879-87. PubMed ID: 8756647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.
    Deng J; Wu Y; Zheng Z; Chen N; Luo X; Tang H; Keasling JD
    Microb Cell Fact; 2021 Oct; 20(1):202. PubMed ID: 34663323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.
    Johnston M; Flick JS; Pexton T
    Mol Cell Biol; 1994 Jun; 14(6):3834-41. PubMed ID: 8196626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Highly Efficient Copper-Inducible
    Zhou P; Fang X; Xu N; Yao Z; Xie W; Ye L
    ACS Synth Biol; 2021 Dec; 10(12):3435-3444. PubMed ID: 34874147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of catabolite regulatory genes in Saccharomyces cerevisiae to increase ethanol production using hydrolysate from red seaweed Gloiopeltis furcata.
    Park YR; Yang JW; Sunwoo IY; Jang BK; Kim SR; Jeong GT; Kim SK
    J Biotechnol; 2021 Jun; 333():1-9. PubMed ID: 33878391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae.
    Peng B; Wood RJ; Nielsen LK; Vickers CE
    ACS Synth Biol; 2018 Feb; 7(2):748-751. PubMed ID: 29301066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel GAL recombinant yeast strain for enhanced protein production.
    Stagoj MN; Comino A; Komel R
    Biomol Eng; 2006 Sep; 23(4):195-9. PubMed ID: 16707274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.