These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37224363)

  • 1. Learning-Based Slip Detection for Dexterous Manipulation Using GelStereo Sensing.
    Cui S; Wang S; Wang R; Zhang S; Zhang C
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13691-13700. PubMed ID: 37224363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Precision 3D Reconstruction Study with Emphasis on Refractive Calibration of GelStereo-Type Sensors.
    Zhang C; Cui S; Wang S; Hu J; Huangfu Y; Zhang B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots.
    Elangovan N; Chang CM; Gao G; Liarokapis M
    Front Robot AI; 2022; 9():808154. PubMed ID: 35546901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation.
    Costanzo M; De Maria G; Natale C; Pirozzi S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force.
    Yuan W; Dong S; Adelson EH
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Intelligent Robot Point Cloud Grasping in Internet of Things.
    Wang Z; Li S; Bai Q; Song Q; Zhang X; Pu R
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Vibro-Tactile Perception for Simultaneous Texture Identification, Slip Detection, and Speed Estimation.
    Massalim Y; Kappassov Z; Varol HA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal tactile sensing fused with vision for dexterous robotic housekeeping.
    Mao Q; Liao Z; Yuan J; Zhu R
    Nat Commun; 2024 Aug; 15(1):6871. PubMed ID: 39127714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset.
    Delhaye BP; Jarocka E; Barrea A; Thonnard JL; Edin B; Lefèvre P
    Elife; 2021 Apr; 10():. PubMed ID: 33884951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks.
    Veiga F; Akrour R; Peters J
    Front Robot AI; 2020; 7():521448. PubMed ID: 33501302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks.
    Melnik A; Lach L; Plappert M; Korthals T; Haschke R; Ritter H
    Front Robot AI; 2021; 8():538773. PubMed ID: 34268337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning.
    Duan H; Wang P; Huang Y; Xu G; Wei W; Shen X
    Front Neurorobot; 2021; 15():658280. PubMed ID: 34177509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonprehensile Manipulation for Rapid Object Spinning via Multisensory Learning from Demonstration.
    Shin KJ; Jeon S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands.
    Chang CM; Gerez L; Elangovan N; Zisimatos A; Liarokapis M
    Front Neurorobot; 2019; 13():91. PubMed ID: 31787889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Experimental Research of Robot Finger Sliding Tactile Sensor Based on FBG.
    Lu G; Fu S; Xu Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection.
    Liu Y; Han H; Liu T; Yi J; Li Q; Inoue Y
    Sensors (Basel); 2016 Mar; 16(4):430. PubMed ID: 27023545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.