BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37224386)

  • 1. Enhancement of β-Caryophyllene Biosynthesis in
    Lu S; Deng H; Zhou C; Du Z; Guo X; Cheng Y; He X
    ACS Synth Biol; 2023 Jun; 12(6):1696-1707. PubMed ID: 37224386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae.
    Godara A; Kao KC
    Microb Cell Fact; 2021 May; 20(1):106. PubMed ID: 34044821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene.
    Chen JL; Fang HM; Ji YP; Pu GB; Guo YW; Huang LL; Du ZG; Liu BY; Ye HC; Li GF; Wang H
    Planta Med; 2011 Oct; 77(15):1759-65. PubMed ID: 21509717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism.
    Lu S; Zhou C; Guo X; Du Z; Cheng Y; Wang Z; He X
    Microb Biotechnol; 2022 Aug; 15(8):2292-2306. PubMed ID: 35531990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin.
    Lv Z; Zhang F; Pan Q; Fu X; Jiang W; Shen Q; Yan T; Shi P; Lu X; Sun X; Tang K
    Plant Cell Physiol; 2016 Mar; 57(3):588-602. PubMed ID: 26858285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis.
    Reinsvold RE; Jinkerson RE; Radakovits R; Posewitz MC; Basu C
    J Plant Physiol; 2011 May; 168(8):848-52. PubMed ID: 21185107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Nootkatone Biosynthesis in
    Gou Y; Zhang F; Tang Y; Jiang C; Bai G; Xie H; Chen M; Liao Z
    ACS Synth Biol; 2021 May; 10(5):957-963. PubMed ID: 33973783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cDNA clone for beta-caryophyllene synthase from Artemisia annua.
    Cai Y; Jia JW; Crock J; Lin ZX; Chen XY; Croteau R
    Phytochemistry; 2002 Nov; 61(5):523-9. PubMed ID: 12409018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.
    Ro DK; Ouellet M; Paradise EM; Burd H; Eng D; Paddon CJ; Newman JD; Keasling JD
    BMC Biotechnol; 2008 Nov; 8():83. PubMed ID: 18983675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Multiple Strategies To Debottleneck the Biosynthesis of Longifolene by Engineered
    Xia F; Du J; Wang K; Liu L; Ba L; Liu H; Liu Y
    J Agric Food Chem; 2022 Sep; 70(36):11336-11343. PubMed ID: 36047715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L.
    Wang H; Han J; Kanagarajan S; Lundgren A; Brodelius PE
    PLoS One; 2013; 8(11):e80643. PubMed ID: 24278301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High production of valencene in Saccharomyces cerevisiae through metabolic engineering.
    Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S
    Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of sesquiterpene patchoulol in mitochondrion-engineered Saccharomyces cerevisiae.
    Tao XY; Lin YC; Wang FQ; Liu QH; Ma YS; Liu M; Wei DZ
    Biotechnol Lett; 2022 Apr; 44(4):571-580. PubMed ID: 35254611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.
    Lindahl AL; Olsson ME; Mercke P; Tollbom O; Schelin J; Brodelius M; Brodelius PE
    Biotechnol Lett; 2006 Apr; 28(8):571-80. PubMed ID: 16614895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli to convert acetic acid to β-caryophyllene.
    Yang J; Nie Q
    Microb Cell Fact; 2016 May; 15():74. PubMed ID: 27149950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching carbon metabolic flux for enhancing the production of sesquiterpene-based high-density biofuel precursor in Saccharomyces cerevisiae.
    Liang B; Yang Q; Zhang X; Zhao Y; Liu Y; Yang J; Wang Z
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):124. PubMed ID: 37542329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco.
    Cheng T; Zhang K; Guo J; Yang Q; Li Y; Xian M; Zhang R
    Biotechnol Biofuels Bioprod; 2022 Apr; 15(1):39. PubMed ID: 35468840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua.
    Kirby J; Romanini DW; Paradise EM; Keasling JD
    FEBS J; 2008 Apr; 275(8):1852-9. PubMed ID: 18336574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.