BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37224524)

  • 21. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress.
    Ma WF; Li YB; Nai GJ; Liang GP; Ma ZH; Chen BH; Mao J
    PeerJ; 2022; 10():e13691. PubMed ID: 36039369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression.
    Yu JQ; Gu KD; Zhang LL; Sun CH; Zhang QY; Wang JH; Wang CK; Wang WY; Du MC; Hu DG
    J Integr Plant Biol; 2022 Apr; 64(4):884-900. PubMed ID: 35199464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of
    Jiang R; Wu L; Zeng J; Shah K; Zhang R; Hu G; Qin Y; Zhang Z
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits.
    Ren Y; Li M; Guo S; Sun H; Zhao J; Zhang J; Liu G; He H; Tian S; Yu Y; Gong G; Zhang H; Zhang X; Alseekh S; Fernie AR; Scheller HV; Xu Y
    Plant Cell; 2021 Jul; 33(5):1554-1573. PubMed ID: 33570606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize.
    Kumar R; Bishop E; Bridges WC; Tharayil N; Sekhon RS
    Plant Cell Environ; 2019 Sep; 42(9):2597-2611. PubMed ID: 31158300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of sugars and simple sugar derivatives in plants.
    Patrick JW; Botha FC; Birch RG
    Plant Biotechnol J; 2013 Feb; 11(2):142-56. PubMed ID: 23043616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species.
    Cakpo CB; Vercambre G; Baldazzi V; Roch L; Dai Z; Valsesia P; Memah MM; Colombié S; Moing A; Gibon Y; Génard M
    Ann Bot; 2020 Aug; 126(3):455-470. PubMed ID: 32333754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot.
    Iqbal S; Ni X; Bilal MS; Shi T; Khalil-Ur-Rehman M; Zhenpeng P; Jie G; Usman M; Gao Z
    Gene; 2020 Jun; 742():144584. PubMed ID: 32173541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.
    Wei X; Liu F; Chen C; Ma F; Li M
    Front Plant Sci; 2014; 5():569. PubMed ID: 25414708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.
    Qiao L; Cao M; Zheng J; Zhao Y; Zheng ZL
    BMC Plant Biol; 2017 Oct; 17(1):186. PubMed ID: 29084509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries.
    Lu L; Delrot S; Liang Z
    Mol Hortic; 2024 Jun; 4(1):22. PubMed ID: 38835095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between sugar transport and plant development.
    Guo WJ; Pommerrenig B; Neuhaus HE; Keller I
    J Plant Physiol; 2023 Sep; 288():154073. PubMed ID: 37603910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.).
    Nishio S; Hayashi T; Shirasawa K; Saito T; Terakami S; Takada N; Takeuchi Y; Moriya S; Itai A
    BMC Plant Biol; 2021 Aug; 21(1):378. PubMed ID: 34399685
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Zhang Z; Zou L; Ren C; Ren F; Wang Y; Fan P; Li S; Liang Z
    Genes (Basel); 2019 Mar; 10(4):. PubMed ID: 30925768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The maturation profile triggers differential expression of sugar metabolism genes in melon fruits.
    Stroka MA; Reis L; Souza Los KK; Pinto CA; Gustani FM; Forney CF; Etto RM; Galvão CW; Ayub RA
    Plant Physiol Biochem; 2024 Feb; 207():108418. PubMed ID: 38346367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants.
    Salvi P; Agarrwal R; Kajal ; Gandass N; Manna M; Kaur H; Deshmukh R
    Physiol Plant; 2022 Mar; 174(2):e13652. PubMed ID: 35174495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development.
    Li J; Kim YJ; Zhang D
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo characterization of the Goji berry (Lycium barbarium L.) fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations.
    Ma Y; Reddy VR; Devi MJ; Song L; Cao B
    Tree Physiol; 2019 Jun; 39(6):1032-1045. PubMed ID: 30824924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar Metabolism in Stone Fruit: Source-Sink Relationships and Environmental and Agronomical Effects.
    Falchi R; Bonghi C; Drincovich MF; Famiani F; Lara MV; Walker RP; Vizzotto G
    Front Plant Sci; 2020; 11():573982. PubMed ID: 33281843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.