These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 3722462)

  • 1. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket.
    Hoy RR; Nolen TG; Casaday GC
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7772-6. PubMed ID: 3865195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket Gryllus bimaculatus.
    Horch HW; Sheldon E; Cutting CC; Williams CR; Riker DM; Peckler HR; Sangal RB
    Dev Neurosci; 2011; 33(1):21-37. PubMed ID: 21346310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound sensitive neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1990 Mar; 166(5):651-62. PubMed ID: 2341990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing normal input permits regenerating foreign afferents to innervate an identified crayfish sensory interneuron.
    Krasne FB
    J Neurobiol; 1987 Jan; 18(1):61-73. PubMed ID: 3572387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from deafferentation by cricket interneurons after reinnervation by their peripheral field.
    Murphey RK; Matsumoto SG; Mendenhall B
    J Comp Neurol; 1976 Oct; 169(3):335-46. PubMed ID: 972203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central projections of auditory receptor neurons of crickets.
    Imaizumi K; Pollack GS
    J Comp Neurol; 2005 Dec; 493(3):439-47. PubMed ID: 16261528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of the enhanced input to cockroach giant interneurons after partial deafferentation.
    Volman SF
    J Neurobiol; 1989 Dec; 20(8):762-83. PubMed ID: 2584965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual projections induced into the auditory pathway of ferrets: II. Corticocortical connections of primary auditory cortex.
    Pallas SL; Sur M
    J Comp Neurol; 1993 Nov; 337(2):317-33. PubMed ID: 8277005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of the projection and synaptic connections of tympanic receptor fibers of Locusta migratoria (Orthoptera) after axotomy.
    Lakes R; Kalmring K
    J Neurobiol; 1991 Mar; 22(2):169-81. PubMed ID: 2030340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of EphA4 enhances deafferentation-induced ipsilateral sprouting in auditory brainstem projections.
    Hsieh CY; Hong CT; Cramer KS
    J Comp Neurol; 2007 Oct; 504(5):508-18. PubMed ID: 17702003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.
    Hennig RM
    J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera.
    Römer H; Marquart V; Hardt M
    J Comp Neurol; 1988 Sep; 275(2):201-15. PubMed ID: 3220974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages.
    Momose-Sato Y; Glover JC; Sato K
    J Neurophysiol; 2006 Oct; 96(4):1949-62. PubMed ID: 16790599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.