These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37224639)
1. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling. Li L; Niu Y; Wei G; Manickam S; Sun X; Zhu Z Ultrason Sonochem; 2023 Jul; 97():106446. PubMed ID: 37224639 [TBL] [Abstract][Full Text] [Related]
2. Eulerian-Lagrangian method for simulation of cloud cavitation. Maeda K; Colonius T J Comput Phys; 2018 Oct; 371():994-1017. PubMed ID: 30739952 [TBL] [Abstract][Full Text] [Related]
3. A physics based multiscale modeling of cavitating flows. Ma J; Hsiao CT; Chahine GL Comput Fluids; 2017 Mar; 145():68-84. PubMed ID: 29720773 [TBL] [Abstract][Full Text] [Related]
4. LES investigation of the wavy leading edge effect on cavitation noise. Yang Z; Wang X; Zhao X; Cheng H; Ji B Ultrason Sonochem; 2024 Feb; 103():106780. PubMed ID: 38286041 [TBL] [Abstract][Full Text] [Related]
5. Research on Noise-Induced Characteristics of Unsteady Cavitation of a Jet Pump. Gan J; Zhang K; Wang D ACS Omega; 2022 Apr; 7(14):12255-12267. PubMed ID: 35449934 [TBL] [Abstract][Full Text] [Related]
6. Modeling and numerical simulation of the bubble cloud dynamics in an ultrasound field for burst wave lithotripsy. Maeda K; Colonius T; Maxwell A; Kreider W; Bailey M Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612742 [TBL] [Abstract][Full Text] [Related]
7. High intensity focused ultrasound lithotripsy with cavitating microbubbles. Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448 [TBL] [Abstract][Full Text] [Related]
8. Influence of distribution parameters on acoustic radiation from bubble clusters. Deng F; Zhang L; Wang P; Wu Y; Zhao D; Li Y Ultrason Sonochem; 2024 Dec; 111():107066. PubMed ID: 39288594 [TBL] [Abstract][Full Text] [Related]
9. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542 [TBL] [Abstract][Full Text] [Related]
10. Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor. Xu S; Wang J; Cheng H; Ji B; Long X Ultrason Sonochem; 2020 Oct; 67():105183. PubMed ID: 32474184 [TBL] [Abstract][Full Text] [Related]
11. Simulation of Slag Droplet Entrainment by Volume of Fluid and Lagrangian Particle Tracking Coupled Modeling. Li L; Wei G; Zhu Z; Li B ACS Omega; 2023 Aug; 8(31):28290-28300. PubMed ID: 37576660 [TBL] [Abstract][Full Text] [Related]
12. Research on the collapse characteristics of single cavitation bubble near solid particle by the VOF method. Lyu F; Zhang X; Yuan H; Han S; Tang M Heliyon; 2023 Nov; 9(11):e21855. PubMed ID: 38045155 [TBL] [Abstract][Full Text] [Related]
13. Active control of airfoil turbulent boundary layer noise with trailing-edge blowing. Yang C; Arcondoulis EJG; Yang Y; Guo J; Maryami R; Bi C; Liu Y J Acoust Soc Am; 2023 Apr; 153(4):2115. PubMed ID: 37092929 [TBL] [Abstract][Full Text] [Related]
14. Experimental study of cavitating flow around a NACA 0012 hydrofoil in a slit channel. Skripkin SG; Tsoy MA; Kravtsova AY Sci Rep; 2022 Jul; 12(1):11182. PubMed ID: 35778452 [TBL] [Abstract][Full Text] [Related]
15. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model. Faghih MM; Craven BA; Sharp MK Artif Organs; 2023 Sep; 47(9):1531-1538. PubMed ID: 37032625 [TBL] [Abstract][Full Text] [Related]
16. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826 [TBL] [Abstract][Full Text] [Related]
17. Bubble-bubble interaction: a potential source of cavitation noise. Ida M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016307. PubMed ID: 19257139 [TBL] [Abstract][Full Text] [Related]
18. Lagrangian large eddy simulations via physics-informed machine learning. Tian Y; Woodward M; Stepanov M; Fryer C; Hyett C; Livescu D; Chertkov M Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2213638120. PubMed ID: 37585463 [TBL] [Abstract][Full Text] [Related]
19. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn. Žnidarčič A; Mettin R; Dular M Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548 [TBL] [Abstract][Full Text] [Related]
20. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound. Duryea AP; Cain CA; Tamaddoni HA; Roberts WW; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1619-26. PubMed ID: 25265172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]