BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37224720)

  • 1. Effects of sensorineural hearing loss on formant-frequency discrimination: Measurements and models.
    Carney LH; Cameron DA; Kinast KB; Feld CE; Schwarz DM; Leong UC; McDonough JM
    Hear Res; 2023 Aug; 435():108788. PubMed ID: 37224720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech Coding in the Midbrain: Effects of Sensorineural Hearing Loss.
    Carney LH; Kim DO; Kuwada S
    Adv Exp Med Biol; 2016; 894():427-435. PubMed ID: 27080684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss.
    Carney LH
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):331-352. PubMed ID: 29744729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental frequency effects on thresholds for vowel formant discrimination.
    Kewley-Port D; Li X; Zheng Y; Neel AT
    J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2462-70. PubMed ID: 8865651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
    Su Y; Delgutte B
    J Neurosci; 2020 Mar; 40(10):2080-2093. PubMed ID: 31996454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear auditory models yield new insights into representations of vowels.
    Carney LH; McDonough JM
    Atten Percept Psychophys; 2019 May; 81(4):1034-1046. PubMed ID: 30565098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum spectral contrast for vowel identification by normal-hearing and hearing-impaired listeners.
    Leek MR; Dorman MF; Summerfield Q
    J Acoust Soc Am; 1987 Jan; 81(1):148-54. PubMed ID: 3819173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency discrimination of stylized synthetic vowels with two formants.
    Lyzenga J; Horst JW
    J Acoust Soc Am; 1998 Nov; 104(5):2956-66. PubMed ID: 9821340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory nerve representation of vowels in background noise.
    Sachs MB; Voigt HF; Young ED
    J Neurophysiol; 1983 Jul; 50(1):27-45. PubMed ID: 6875649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting vowel formant discrimination by hearing-impaired listeners.
    Liu C; Kewley-Port D
    J Acoust Soc Am; 2007 Nov; 122(5):2855-64. PubMed ID: 18189575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate representation and discriminability of second formant frequencies for /epsilon/-like steady-state vowels in cat auditory nerve.
    Conley RA; Keilson SE
    J Acoust Soc Am; 1995 Dec; 98(6):3223-34. PubMed ID: 8550947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formant-frequency discrimination for isolated English vowels.
    Kewley-Port D; Watson CS
    J Acoust Soc Am; 1994 Jan; 95(1):485-96. PubMed ID: 8120259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech coding in the auditory nerve: I. Vowel-like sounds.
    Delgutte B; Kiang NY
    J Acoust Soc Am; 1984 Mar; 75(3):866-78. PubMed ID: 6707316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast enhancement improves the representation of /epsilon/-like vowels in the hearing-impaired auditory nerve.
    Miller RL; Calhoun BM; Young ED
    J Acoust Soc Am; 1999 Nov; 106(5):2693-708. PubMed ID: 10573886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midbrain Synchrony to Envelope Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like Sounds in Noise.
    Henry KS; Abrams KS; Forst J; Mender MJ; Neilans EG; Idrobo F; Carney LH
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):165-181. PubMed ID: 27766433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of formant-frequency discrimination in noise based on model auditory-nerve responses.
    Tan Q; Carney LH
    J Acoust Soc Am; 2006 Sep; 120(3):1435-45. PubMed ID: 17004467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.