These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37225165)

  • 41. Tracking the Fatigue Status after a Resistance Exercise through Different Parameters.
    Brisola GMP; Dobbs WC; Zagatto AM; Esco MR
    Int J Sports Med; 2022 Oct; 43(11):941-948. PubMed ID: 35853461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of Vertical Jump as a Measure of Neuromuscular Readiness and Fatigue.
    Watkins CM; Barillas SR; Wong MA; Archer DC; Dobbs IJ; Lockie RG; Coburn JW; Tran TT; Brown LE
    J Strength Cond Res; 2017 Dec; 31(12):3305-3310. PubMed ID: 28902119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Return of postural control to baseline after anaerobic and aerobic exercise protocols.
    Fox ZG; Mihalik JP; Blackburn JT; Battaglini CL; Guskiewicz KM
    J Athl Train; 2008; 43(5):456-63. PubMed ID: 18833307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of acute fatigue on countermovement jump performance in rugby union players during preseason.
    Kennedy RA; Drake D
    J Sports Med Phys Fitness; 2017 Oct; 57(10):1261-1266. PubMed ID: 28085126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hypoxia During Resistance Exercise Does Not Affect Physical Performance, Perceptual Responses, or Neuromuscular Recovery.
    Scott BR; Slattery KM; Sculley DV; Dascombe BJ
    J Strength Cond Res; 2018 Aug; 32(8):2174-2182. PubMed ID: 29239993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy demands in taekwondo athletes during combat simulation.
    Campos FA; Bertuzzi R; Dourado AC; Santos VG; Franchini E
    Eur J Appl Physiol; 2012 Apr; 112(4):1221-8. PubMed ID: 21769736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy System Assessment in Survivors of Breast Cancer.
    Cuesta-Vargas AI; Buchan J; Pajares B; Alba E; Trinidad-Fernández M; Ruiz-Medina S; García-Almeida JM; Ríos-López MJ; Roldán-Jiménez C
    Phys Ther; 2020 Mar; 100(3):438-446. PubMed ID: 32043129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in energy system contributions to the Wingate anaerobic test in climbers after a high altitude expedition.
    Doria C; Verratti V; Pietrangelo T; Fanò-Illic G; Bisconti AV; Shokohyar S; Rampichini S; Limonta E; Coratella G; Longo S; Cè E; Esposito F
    Eur J Appl Physiol; 2020 Jul; 120(7):1629-1636. PubMed ID: 32494861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Acute Judo Training on Countermovement Jump Performance and Perceived Fatigue among Collegiate Athletes.
    Chang CC; Chen TY; Wu CL; Ho PY; Chiang CY
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acute Ingestion of a Commercially Available Pre-workout Supplement Improves Anaerobic Power Output and Reduces Muscular Fatigue.
    Panayi S; Galbraith A
    Int J Exerc Sci; 2022; 15(6):455-472. PubMed ID: 35519437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reproducibility of performance and fatigue in trail running.
    Easthope CS; Nosaka K; Caillaud C; Vercruyssen F; Louis J; Brisswalter J
    J Sci Med Sport; 2014 Mar; 17(2):207-11. PubMed ID: 23660298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blood flow restriction during self-paced aerobic intervals reduces mechanical and cardiovascular demands without modifying neuromuscular fatigue.
    Smith NDW; Girard O; Scott BR; Peiffer JJ
    Eur J Sport Sci; 2023 May; 23(5):755-765. PubMed ID: 35400303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of acute pre-workout supplementation on power and strength performance.
    Martinez N; Campbell B; Franek M; Buchanan L; Colquhoun R
    J Int Soc Sports Nutr; 2016; 13():29. PubMed ID: 27429596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Core stabilization exercises enhance lactate clearance following high-intensity exercise.
    Navalta JW; Hrncir SP
    J Strength Cond Res; 2007 Nov; 21(4):1305-9. PubMed ID: 18076266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic cost of rope training.
    Fountaine CJ; Schmidt BJ
    J Strength Cond Res; 2015 Apr; 29(4):889-93. PubMed ID: 23897017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy demands in high-intensity intermittent taekwondo specific exercises.
    Bartel C; Coswig VS; Protzen GV; Del Vecchio FB
    PeerJ; 2022; 10():e13654. PubMed ID: 36039367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout "Fran" are Modulated by Competition Class and Percentile Rank.
    Mangine GT; McDougle JM; Feito Y
    Front Physiol; 2022; 13():893771. PubMed ID: 35721570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes of whole-body power, muscle function, and jump performance with prolonged cycling to exhaustion.
    McIntyre JP; Mawston GA; Cairns SP
    Int J Sports Physiol Perform; 2012 Dec; 7(4):332-9. PubMed ID: 22645195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of a single bout of lower-body aerobic exercise on muscle activation and performance during subsequent lower- and upper-body resistance exercise workouts.
    Tan JG; Coburn JW; Brown LE; Judelson DA
    J Strength Cond Res; 2014 May; 28(5):1235-40. PubMed ID: 24531438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic Profiles of the 30-15 Intermittent Fitness Test and the Corresponding Continuous Version in Team-Sport Athletes-Elucidating the Role of Inter-Effort Recovery.
    Kaufmann S; Beneke R; Latzel R; Pfister H; Hoos O
    Int J Sports Physiol Perform; 2021 Nov; 16(11):1634-1639. PubMed ID: 33848977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.