These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37225984)

  • 1. Walking naturally after spinal cord injury using a brain-spine interface.
    Lorach H; Galvez A; Spagnolo V; Martel F; Karakas S; Intering N; Vat M; Faivre O; Harte C; Komi S; Ravier J; Collin T; Coquoz L; Sakr I; Baaklini E; Hernandez-Charpak SD; Dumont G; Buschman R; Buse N; Denison T; van Nes I; Asboth L; Watrin A; Struber L; Sauter-Starace F; Langar L; Auboiroux V; Carda S; Chabardes S; Aksenova T; Demesmaeker R; Charvet G; Bloch J; Courtine G
    Nature; 2023 Jun; 618(7963):126-133. PubMed ID: 37225984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted neurotechnology restores walking in humans with spinal cord injury.
    Wagner FB; Mignardot JB; Le Goff-Mignardot CG; Demesmaeker R; Komi S; Capogrosso M; Rowald A; Seáñez I; Caban M; Pirondini E; Vat M; McCracken LA; Heimgartner R; Fodor I; Watrin A; Seguin P; Paoles E; Van Den Keybus K; Eberle G; Schurch B; Pralong E; Becce F; Prior J; Buse N; Buschman R; Neufeld E; Kuster N; Carda S; von Zitzewitz J; Delattre V; Denison T; Lambert H; Minassian K; Bloch J; Courtine G
    Nature; 2018 Nov; 563(7729):65-71. PubMed ID: 30382197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neurons that restore walking after paralysis.
    Kathe C; Skinnider MA; Hutson TH; Regazzi N; Gautier M; Demesmaeker R; Komi S; Ceto S; James ND; Cho N; Baud L; Galan K; Matson KJE; Rowald A; Kim K; Wang R; Minassian K; Prior JO; Asboth L; Barraud Q; Lacour SP; Levine AJ; Wagner F; Bloch J; Squair JW; Courtine G
    Nature; 2022 Nov; 611(7936):540-547. PubMed ID: 36352232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration.
    Ajiboye AB; Willett FR; Young DR; Memberg WD; Murphy BA; Miller JP; Walter BL; Sweet JA; Hoyen HA; Keith MW; Peckham PH; Simeral JD; Donoghue JP; Hochberg LR; Kirsch RF
    Lancet; 2017 May; 389(10081):1821-1830. PubMed ID: 28363483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia.
    King CE; Wang PT; McCrimmon CM; Chou CC; Do AH; Nenadic Z
    J Neuroeng Rehabil; 2015 Sep; 12():80. PubMed ID: 26400061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "I Felt the Ball"-The Future of Spine Injury Recovery.
    Sharif S; Ali SM
    World Neurosurg; 2020 Aug; 140():602-613. PubMed ID: 32446984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-spine interface allows paralysed man to walk using his thoughts.
    Lewis D
    Nature; 2023 Jun; 618(7963):18. PubMed ID: 37225819
    [No Abstract]   [Full Text] [Related]  

  • 10. Ten-Year Experience With Continuous Low-Frequency Pelvic Somatic Nerves Stimulation for Recovery of Voluntary Walking in People With Chronic Spinal Cord Injury: A Prospective Case Series of 29 Consecutive Patients.
    Possover M
    Arch Phys Med Rehabil; 2021 Jan; 102(1):50-57. PubMed ID: 33065123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients.
    Lu DC; Edgerton VR; Modaber M; AuYong N; Morikawa E; Zdunowski S; Sarino ME; Sarrafzadeh M; Nuwer MR; Roy RR; Gerasimenko Y
    Neurorehabil Neural Repair; 2016 Nov; 30(10):951-962. PubMed ID: 27198185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis.
    Rowald A; Komi S; Demesmaeker R; Baaklini E; Hernandez-Charpak SD; Paoles E; Montanaro H; Cassara A; Becce F; Lloyd B; Newton T; Ravier J; Kinany N; D'Ercole M; Paley A; Hankov N; Varescon C; McCracken L; Vat M; Caban M; Watrin A; Jacquet C; Bole-Feysot L; Harte C; Lorach H; Galvez A; Tschopp M; Herrmann N; Wacker M; Geernaert L; Fodor I; Radevich V; Van Den Keybus K; Eberle G; Pralong E; Roulet M; Ledoux JB; Fornari E; Mandija S; Mattera L; Martuzzi R; Nazarian B; Benkler S; Callegari S; Greiner N; Fuhrer B; Froeling M; Buse N; Denison T; Buschman R; Wende C; Ganty D; Bakker J; Delattre V; Lambert H; Minassian K; van den Berg CAT; Kavounoudias A; Micera S; Van De Ville D; Barraud Q; Kurt E; Kuster N; Neufeld E; Capogrosso M; Asboth L; Wagner FB; Bloch J; Courtine G
    Nat Med; 2022 Feb; 28(2):260-271. PubMed ID: 35132264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury.
    Luo S; Xu H; Zuo Y; Liu X; All AH
    Neuromolecular Med; 2020 Dec; 22(4):447-463. PubMed ID: 31916220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive, Brain-controlled Functional Electrical Stimulation for Locomotion Rehabilitation in Individuals with Paraplegia.
    Selfslagh A; Shokur S; Campos DSF; Donati ARC; Almeida S; Yamauti SY; Coelho DB; Bouri M; Nicolelis MAL
    Sci Rep; 2019 May; 9(1):6782. PubMed ID: 31043637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array.
    Ting JE; Del Vecchio A; Sarma D; Verma N; Colachis SC; Annetta NV; Collinger JL; Farina D; Weber DJ
    J Neurophysiol; 2021 Dec; 126(6):2104-2118. PubMed ID: 34788156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-gait-specific intervention for the rehabilitation of walking after SCI: role of the arms.
    Zhou R; Alvarado L; Ogilvie R; Chong SL; Shaw O; Mushahwar VK
    J Neurophysiol; 2018 Jun; 119(6):2194-2211. PubMed ID: 29364074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury.
    Bonizzato M; Pidpruzhnykova G; DiGiovanna J; Shkorbatova P; Pavlova N; Micera S; Courtine G
    Nat Commun; 2018 Aug; 9(1):3015. PubMed ID: 30068906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury.
    Carhart MR; He J; Herman R; D'Luzansky S; Willis WT
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):32-42. PubMed ID: 15068185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrease of spasticity after hybrid assistive limb
    Ikumi A; Kubota S; Shimizu Y; Kadone H; Marushima A; Ueno T; Kawamoto H; Hada Y; Matsumura A; Sankai Y; Yamazaki M
    J Spinal Cord Med; 2017 Sep; 40(5):573-578. PubMed ID: 27762171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of Volitional Motor Control and Overground Walking in Participants With Chronic Clinically Motor Complete Spinal Cord Injury: Restoration of Rehabilitative Function With Epidural Spinal Stimulation (RESTORES) Trial-A Preliminary Study.
    Wan KR; Ng ZYV; Wee SK; Fatimah M; Lui W; Phua MW; So QYR; Maszczyk TK; Premchand B; Saffari SE; Ker RXJ; Ng WH
    J Neurotrauma; 2024 May; 41(9-10):1146-1162. PubMed ID: 38115642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.