These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37226052)

  • 21. Stability and spectroscopic properties of singly and doubly charged anions.
    Behera S; Jena P
    J Phys Chem A; 2012 Jun; 116(23):5604-17. PubMed ID: 22612055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalized deltahedral Zintl complexes Ge
    Reddy GN; Parida R; Giri S
    Chem Commun (Camb); 2017 Dec; 53(99):13229-13232. PubMed ID: 29182179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Superhalogen Properties of Polynuclear Structures without Halogen Ligands: A Combined
    Li JF; Yin B
    J Phys Chem A; 2021 Apr; 125(16):3378-3386. PubMed ID: 33856797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a Novel Series of Hetero-Binuclear Superhalogen Anions MM'X
    Yang H; He HM; Li N; Jiang S; Pang MJ; Li Y; Zhao JG
    Front Chem; 2022; 10():936936. PubMed ID: 35844647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining proton and silaborane-based superhalogen anions - an effective route to new superacids as verified via systematic DFT calculations.
    Luo L; Zhou FQ; Zhao RF; Li JF; Wu LY; Li JL; Yin B
    Dalton Trans; 2019 Nov; 48(43):16184-16198. PubMed ID: 31596294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Could the increased structural versatility imposed by non-halogen ligands bring something new for polynuclear superhalogens? A case study on binuclear [Mg
    Zhao RF; Yu L; Zhou FQ; Li JF; Yin B
    Phys Chem Chem Phys; 2017 Oct; 19(39):26986-26995. PubMed ID: 28956570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deltahedral Organo-Zintl Superhalogens.
    Reddy GN; Parida R; Chakraborty A; Giri S
    Chemistry; 2018 Sep; 24(51):13654-13658. PubMed ID: 30011359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfluorinated polycyclic aromatic hydrocarbons: anthracene, phenanthrene, pyrene, tetracene, chrysene, and triphenylene.
    Feng X; Li Q; Gu J; Cotton FA; Xie Y; Schaefer HF
    J Phys Chem A; 2009 Feb; 113(5):887-94. PubMed ID: 19133794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhalogen Anions Supported by the Systems Comprising Alternately Aligned Boron and Nitrogen Central Atoms.
    Cyraniak A; Faron D; Freza S; Anusiewicz I; Skurski P
    Front Chem; 2022; 10():863408. PubMed ID: 35529695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superhalogen anions utilizing acidic functional groups as ligands.
    Anusiewicz I
    J Phys Chem A; 2009 Oct; 113(42):11429-34. PubMed ID: 19827856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX
    Wu LY; Li JF; Zhao RF; Luo L; Wang YC; Yin B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19104-19114. PubMed ID: 31432847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comment on: "Probing the Properties of Polynuclear Superhalogens without Halogen Ligand via ab Initio Calculations: A Case Study on Double-Bridged [Mg2 (CN)5 ](-1) Anions" by Li et al.
    Díaz-Tinoco M; Ortiz JV
    Chemphyschem; 2016 Sep; 17(18):2945-6. PubMed ID: 27304667
    [No Abstract]   [Full Text] [Related]  

  • 33. Superhalogens as Building Blocks of Super Lewis Acids.
    Reddy GN; Parida R; Jena P; Jana M; Giri S
    Chemphyschem; 2019 Jun; 20(12):1607-1612. PubMed ID: 30989750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophilic substituents as ligands in superhalogen anions.
    Anusiewicz I
    J Phys Chem A; 2009 Jun; 113(23):6511-6. PubMed ID: 19492854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoelectron spectroscopy of anions at 118.2 nm: observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La).
    Yang J; Wang XB; Xing XP; Wang LS
    J Chem Phys; 2008 May; 128(20):201102. PubMed ID: 18513001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing aromatic heterocyclic superacids in terms of Brønsted and Lewis perspectives.
    Parida R; Nambiar SR; Reddy GN; Giri S
    Phys Chem Chem Phys; 2020 Jan; 22(4):1923-1931. PubMed ID: 31912831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of superhalogens using a core-shell structure model.
    Liu Z; Liu X; Zhao J
    Nanoscale; 2017 Dec; 9(47):18781-18787. PubMed ID: 29171612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium-Based Clusters as Building Blocks of Electrolytes in Lithium-Ion Batteries.
    Sikorska C
    Chemphyschem; 2019 Sep; 20(17):2236-2246. PubMed ID: 31309658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MX3(-) superhalogens (M = Be, Mg, Ca; X = Cl, Br): a photoelectron spectroscopic and ab initio theoretical study.
    Elliott BM; Koyle E; Boldyrev AI; Wang XB; Wang LS
    J Phys Chem A; 2005 Dec; 109(50):11560-7. PubMed ID: 16354048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.
    Yin S; Bernstein ER
    J Chem Phys; 2016 Oct; 145(15):154302. PubMed ID: 27782493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.