BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37226101)

  • 1. Direct Organocatalytic Chemoselective Reductive Alkylation of Chiral 2-Aroylcyclopropanecarbaldehydes: Scope and Applications.
    Hussain A; Ramachary DB
    J Org Chem; 2023 Jul; 88(13):8069-8092. PubMed ID: 37226101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organocatalytic Reductive Amination of the Chiral Formylcyclopropanes: Scope and Applications.
    Hussain A; Peraka S; Ramachary DB
    J Org Chem; 2023 Dec; 88(23):16047-16064. PubMed ID: 37948127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general approach to chiral building blocks via direct amino acid-catalyzed cascade three-component reductive alkylations: formal total synthesis of HIV-1 protease inhibitors, antibiotic agglomerins, brefeldin A, and (R)-gamma-hexanolide.
    Ramachary DB; Vijayendar Reddy Y
    J Org Chem; 2010 Jan; 75(1):74-85. PubMed ID: 19954143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organocatalytic sequential one-pot double cascade asymmetric synthesis of Wieland-Miescher ketone analogues from a Knoevenagel/hydrogenation/Robinson annulation sequence: scope and applications of organocatalytic biomimetic reductions.
    Ramachary DB; Kishor M
    J Org Chem; 2007 Jul; 72(14):5056-68. PubMed ID: 17552564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular Access to Chiral 2,3-Dihydrofurans and 3,4-Dihydro-2 H-pyrans by Stereospecific Activation of Formylcyclopropanes through Combination of Organocatalytic Reductive Coupling and Lewis-Acid-Catalyzed Annulative Ring-Opening Reactions.
    Peraka S; Hussain A; Ramachary DB
    J Org Chem; 2018 Sep; 83(17):9795-9817. PubMed ID: 30107129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalytic Reductive Propargylation: Scope and Applications.
    Pasha MA; Krishna AV; Ashok E; Ramachary DB
    J Org Chem; 2019 Dec; 84(23):15399-15416. PubMed ID: 31697498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct amino acid-catalyzed cascade biomimetic reductive alkylations: application to the asymmetric synthesis of Hajos-Parrish ketone analogues.
    Ramachary DB; Kishor M
    Org Biomol Chem; 2008 Nov; 6(22):4176-87. PubMed ID: 18972048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Organocatalytic Reductive Alkylation of Syncarpic Acid: Scope and Applications.
    Roy P; Krishna AV; Ramachary DB
    J Org Chem; 2022 Dec; 87(23):16026-16038. PubMed ID: 36367306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel preparation of chiral α-amino acids using the Mitsunobu-Tsunoda reaction.
    Noisier AF; Harris CS; Brimble MA
    Chem Commun (Camb); 2013 Sep; 49(70):7744-6. PubMed ID: 23877629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct α-C-H Alkylation of Structurally Diverse Alcohols via Combined Tavaborole and Photoredox Catalysis.
    Sun T; Jin R; Yang Y; Jia Y; Hu S; Jin Y; Wang Q; Li Z; Zhang Y; Wu J; Jiang Y; Lv X; Liu S
    Org Lett; 2022 Oct; 24(41):7637-7642. PubMed ID: 36218287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective Cyclopropanation of a Wide Variety of Olefins Catalyzed by Ru(II)-Pheox Complexes.
    Chanthamath S; Iwasa S
    Acc Chem Res; 2016 Oct; 49(10):2080-2090. PubMed ID: 27648664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and chemoselective alkylation of amines/amino acids using alcohols as alkylating reagents under mild conditions.
    Xu CP; Xiao ZH; Zhuo BQ; Wang YH; Huang PQ
    Chem Commun (Camb); 2010 Nov; 46(41):7834-6. PubMed ID: 20830335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of orthogonally protected amino acid building blocks for combinatorial N-backbone cyclic peptide chemistry.
    Gellerman G; Elgavi A; Salitra Y; Kramer M
    J Pept Res; 2001 Apr; 57(4):277-91. PubMed ID: 11328485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of α-amino acids based on chiral tricycloiminolactone derived from natural (+)-camphor.
    Luo YC; Zhang HH; Wang Y; Xu PF
    Acc Chem Res; 2010 Oct; 43(10):1317-30. PubMed ID: 20672798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yielding sequential one-pot synthesis of chiral and achiral α-substituted acrylates via a metal-free reductive coupling reaction.
    Ramachary DB; Venkaiah C; Reddy YV
    Org Biomol Chem; 2014 Aug; 12(29):5400-6. PubMed ID: 24934801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.
    Kumar P; Dwivedi N
    Acc Chem Res; 2013 Feb; 46(2):289-99. PubMed ID: 23148510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids.
    Hyslop JF; Lovelock SL; Sutton PW; Brown KK; Watson AJB; Roiban GD
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13821-13824. PubMed ID: 30138551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The asymmetric hydroformylation in the synthesis of pharmaceuticals.
    Botteghi C; Paganelli S; Schionato A; Marchetti M
    Chirality; 1991; 3(4):355-69. PubMed ID: 1742166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic applications of chiral unsaturated epoxy alcohols prepared by sharpless asymmetric epoxidation.
    Riera A; Moreno M
    Molecules; 2010 Feb; 15(2):1041-73. PubMed ID: 20335961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.