These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 37226804)

  • 21. A Study on High-Rate Performance of Graphite Nanostructures Produced by Ball Milling as Anode for Lithium-Ion Batteries.
    Ghanooni Ahmadabadi V; Rahman MM; Chen Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen Doped γ-Graphyne: A Novel Anode for High-Capacity Rechargeable Alkali-Ion Batteries.
    Yang C; Qiao C; Chen Y; Zhao X; Wu L; Li Y; Jia Y; Wang S; Cui X
    Small; 2020 Mar; 16(10):e1907365. PubMed ID: 32053264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries.
    Ma N; Jiang XY; Zhang L; Wang XS; Cao YL; Zhang XZ
    Small; 2018 Apr; 14(14):e1703680. PubMed ID: 29488317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct and rapid thermal shock for recycling spent graphite in lithium-ion batteries.
    Zheng SH; Wang XT; Gu ZY; Lü HY; Li S; Zhang XY; Cao JM; Guo JZ; Wu XL
    J Colloid Interface Sci; 2024 Aug; 667():111-118. PubMed ID: 38626654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double Perovskite La
    Zhang C; Zhang Y; Nie Z; Wu C; Gao T; Yang N; Yu Y; Cui Y; Gao Y; Liu W
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300506. PubMed ID: 37085926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Slightly Expanded Graphite Anode with High Capacity Enabled By Stable Lithium-Ion/Metal Hybrid Storage.
    Li T; Cao Y; Song Q; Peng L; Qin X; Lv W; Kang F
    Small; 2024 May; ():e2403057. PubMed ID: 38805740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries.
    Wang M; Wang J; Xiao J; Ren N; Pan B; Chen CS; Chen CH
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16279-16288. PubMed ID: 35349272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid.
    Liu G; Ma L; Xi X; Nie Z
    Waste Manag; 2024 Apr; 178():105-114. PubMed ID: 38387254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphite/Graphene Composites from the Recovered Spent Zn/Carbon Primary Cell for the High-Performance Anode of Lithium-Ion Batteries.
    Vadivel S; Tejangkura W; Sawangphruk M
    ACS Omega; 2020 Jun; 5(25):15240-15246. PubMed ID: 32637797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon-coated Ni
    Kouchi K; Tayoury M; Chari A; Hdidou L; Chchiyai Z; El Kamouny K; Tamraoui Y; Manoun B; Alami J; Dahbi M
    Phys Chem Chem Phys; 2024 Feb; 26(9):7492-7503. PubMed ID: 38356390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.