These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37226832)
1. A tetranuclear Mn-diamond core complex as a functional mimic of both catechol oxidase and phenoxazinone synthase enzymes. Kumar R; Keshri R; Prodhan K; Shaikh K; Draksharapu A Dalton Trans; 2023 Oct; 52(42):15412-15419. PubMed ID: 37226832 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis, structural, spectral, and redox properties and phenoxazinone synthase activity of tripodal pentacoordinate Mn(II) complexes with impressive turnover numbers. Kumbhakar S; Giri B; Muley A; Karumban KS; Maji S Dalton Trans; 2021 Nov; 50(45):16601-16612. PubMed ID: 34747419 [TBL] [Abstract][Full Text] [Related]
3. Subtle Structural Changes in (Cu Mahapatra P; Ghosh S; Giri S; Rane V; Kadam R; Drew MGB; Ghosh A Inorg Chem; 2017 May; 56(9):5105-5121. PubMed ID: 28387507 [TBL] [Abstract][Full Text] [Related]
4. Ni(II) Complex of N Mahapatra P; Drew MGB; Ghosh A Inorg Chem; 2018 Jul; 57(14):8338-8353. PubMed ID: 29932329 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of a new Cu(ii) complex with an unsymmetrical ligand and its use as an O Dutta S; Mayans J; Ghosh A Dalton Trans; 2020 Jan; 49(4):1276-1291. PubMed ID: 31909778 [TBL] [Abstract][Full Text] [Related]
7. Structures, magnetochemistry, spectroscopy, theoretical study, and catechol oxidase activity of dinuclear and dimer-of-dinuclear mixed-valence Mn(III)Mn(II) complexes derived from a macrocyclic ligand. Jana A; Aliaga-Alcalde N; Ruiz E; Mohanta S Inorg Chem; 2013 Jul; 52(13):7732-46. PubMed ID: 23750907 [TBL] [Abstract][Full Text] [Related]
8. Catechol oxidase activity of a series of new dinuclear copper(II) complexes with 3,5-DTBC and TCC as substrates: syntheses, X-ray crystal structures, spectroscopic characterization of the adducts and kinetic studies. Banu KS; Chattopadhyay T; Banerjee A; Bhattacharya S; Suresh E; Nethaji M; Zangrando E; Das D Inorg Chem; 2008 Aug; 47(16):7083-93. PubMed ID: 18624404 [TBL] [Abstract][Full Text] [Related]
9. Catechol oxidase activity of comparable dimanganese and dicopper complexes. Magherusan AM; Nelis DN; Twamley B; McDonald AR Dalton Trans; 2018 Nov; 47(43):15555-15564. PubMed ID: 30345446 [TBL] [Abstract][Full Text] [Related]
10. Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity. Mukherjee S; Weyhermüller T; Bothe E; Wieghardt K; Chaudhuri P Dalton Trans; 2004 Nov; (22):3842-53. PubMed ID: 15540128 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic Substrate Inhibition in Metal Free Catecholase Activity. Pal K; Barman S; Bag J Chem Biodivers; 2023 Mar; 20(3):e202201166. PubMed ID: 36762430 [TBL] [Abstract][Full Text] [Related]
12. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Mandal S; Mukherjee J; Lloret F; Mukherjee R Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383 [TBL] [Abstract][Full Text] [Related]
13. A novel Cu(II) distorted cubane complex containing Cu Asadi Z; Zarei L; Golchin M; Skorepova E; Eigner V; Amirghofran Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117593. PubMed ID: 31654847 [TBL] [Abstract][Full Text] [Related]
14. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations. Wendt F; Näther C; Tuczek F J Biol Inorg Chem; 2016 Sep; 21(5-6):777-92. PubMed ID: 27333775 [TBL] [Abstract][Full Text] [Related]
15. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme. Terán A; Jaafar A; Sánchez-Peláez AE; Torralba MC; Gutiérrez Á J Biol Inorg Chem; 2020 Jun; 25(4):671-683. PubMed ID: 32367388 [TBL] [Abstract][Full Text] [Related]
16. Entrapment of a Pseudo-Tetrahedral Co Das M; Basak D; Trávníček Z; Vančo J; Ray D Chem Asian J; 2019 Nov; 14(21):3898-3914. PubMed ID: 31545553 [TBL] [Abstract][Full Text] [Related]
17. Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands. Guha A; Chattopadhyay T; Paul ND; Mukherjee M; Goswami S; Mondal TK; Zangrando E; Das D Inorg Chem; 2012 Aug; 51(16):8750-9. PubMed ID: 22867434 [TBL] [Abstract][Full Text] [Related]
18. Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity. Majumder S; Sarkar S; Sasmal S; Sañudo EC; Mohanta S Inorg Chem; 2011 Aug; 50(16):7540-54. PubMed ID: 21776948 [TBL] [Abstract][Full Text] [Related]
19. Catalytic catechol oxidation by copper complexes: development of a structure-activity relationship. Ording-Wenker EC; Siegler MA; Lutz M; Bouwman E Dalton Trans; 2015 Jul; 44(27):12196-209. PubMed ID: 25869395 [TBL] [Abstract][Full Text] [Related]
20. Tetranuclear Ni Patra A; Das A; Sarkar A; Gómez-García CJ; Sinha C Dalton Trans; 2024 Aug; 53(32):13515-13528. PubMed ID: 39072528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]