These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37226832)
21. Exclusive selectivity of multidentate ligands independent on the oxidation state of cobalt: influence of steric hindrance on dioxygen binding and phenoxazinone synthase activity. Panja A Dalton Trans; 2014 Jun; 43(21):7760-70. PubMed ID: 24699794 [TBL] [Abstract][Full Text] [Related]
22. Impressive promiscuous biomimetic models of ascorbate, amine, and catechol oxidases. Selvakumaran B; Murali M; Shanmugavadivel S; Sindhuja V; Sathya V J Inorg Biochem; 2024 Oct; 259():112671. PubMed ID: 39059176 [TBL] [Abstract][Full Text] [Related]
23. Catechol oxidase and phenoxazinone synthase activity of a manganese(II) isoindoline complex. Kaizer J; Baráth G; Csonka R; Speier G; Korecz L; Rockenbauer A; Párkányi L J Inorg Biochem; 2008 Apr; 102(4):773-80. PubMed ID: 18222003 [TBL] [Abstract][Full Text] [Related]
24. Roles of basicity and steric crowding of anionic coligands in catechol oxidase-like activity of Cu(ii)-Mn(ii) complexes. Dutta S; Bhunia P; Mayans J; Drew MGB; Ghosh A Dalton Trans; 2020 Aug; 49(32):11268-11281. PubMed ID: 32760992 [TBL] [Abstract][Full Text] [Related]
25. Dicopper(II) complexes of H-BPMP-type ligands: pH-induced changes of redox, spectroscopic ((19)F NMR studies of fluorinated complexes), structural properties, and catecholase activities. Belle C; Beguin C; Gautier-Luneau I; Hamman S; Philouze C; Pierre JL; Thomas F; Torelli S; Saint-Aman E; Bonin M Inorg Chem; 2002 Feb; 41(3):479-91. PubMed ID: 11825074 [TBL] [Abstract][Full Text] [Related]
26. Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core. Ackermann J; Meyer F; Kaifer E; Pritzkow H Chemistry; 2002 Jan; 8(1):247-58. PubMed ID: 11822456 [TBL] [Abstract][Full Text] [Related]
27. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties. Pal S; Chowdhury B; Patra M; Maji M; Biswas B Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():148-54. PubMed ID: 25754390 [TBL] [Abstract][Full Text] [Related]
28. Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes: theoretical studies, pnicogen bonding interactions and catecholase-like activities. Hazari A; Kanta Das L; Kadam RM; Bauzá A; Frontera A; Ghosh A Dalton Trans; 2015 Feb; 44(8):3862-76. PubMed ID: 25611163 [TBL] [Abstract][Full Text] [Related]
30. Thioether sulfur-bound [Cu Das M; Afsan Z; Basak D; Arjmand F; Ray D Dalton Trans; 2019 Jan; 48(4):1292-1313. PubMed ID: 30608086 [TBL] [Abstract][Full Text] [Related]
31. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism. Born K; Comba P; Daubinet A; Fuchs A; Wadepohl H J Biol Inorg Chem; 2007 Jan; 12(1):36-48. PubMed ID: 16964505 [TBL] [Abstract][Full Text] [Related]
32. Dinuclear copper(II) complexes with derivative triazine ligands as biomimetic models for catechol oxidases and nucleases. Silva MP; Saibert C; Bortolotto T; Bortoluzzi AJ; Schenk G; Peralta RA; Terenzi H; Neves A J Inorg Biochem; 2020 Dec; 213():111249. PubMed ID: 33011624 [TBL] [Abstract][Full Text] [Related]
33. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties. Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171 [TBL] [Abstract][Full Text] [Related]
34. Mono- and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: syntheses, characterization and spectroscopic studies. Banu KS; Chattopadhyay T; Banerjee A; Mukherjee M; Bhattacharya S; Patra GK; Zangrando E; Das D Dalton Trans; 2009 Oct; (40):8755-64. PubMed ID: 19809751 [TBL] [Abstract][Full Text] [Related]
35. A combined experimental and theoretical investigation on the role of halide ligands on the catecholase-like activity of mononuclear nickel(II) complexes with a phenol-based tridentate ligand. Adhikary J; Chakraborty P; Das S; Chattopadhyay T; Bauzá A; Chattopadhyay SK; Ghosh B; Mautner FA; Frontera A; Das D Inorg Chem; 2013 Dec; 52(23):13442-52. PubMed ID: 24246066 [TBL] [Abstract][Full Text] [Related]
36. A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes. Jana NC; Brandão P; Frontera A; Panja A Dalton Trans; 2020 Oct; 49(40):14216-14230. PubMed ID: 33025999 [TBL] [Abstract][Full Text] [Related]
37. Substrate binding in catechol oxidase activity: biomimetic approach. Torelli S; Belle C; Hamman S; Pierre JL; Saint-Aman E Inorg Chem; 2002 Jul; 41(15):3983-9. PubMed ID: 12132925 [TBL] [Abstract][Full Text] [Related]
38. The first example of a centro-symmetrical bis(imido)-bridged dinuclear cobalt(III) complex: synthesis via oxidative dehydrogenation and phenoxazinone synthase activity. Panja A; Guionneau P Dalton Trans; 2013 Apr; 42(14):5068-75. PubMed ID: 23396321 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of mixed-valence hexanuclear Mn(II/III) clusters from its Mn(II) precursor: variations of catecholase-like activity and magnetic coupling. Kar P; Ida Y; Kanetomo T; Drew MG; Ishida T; Ghosh A Dalton Trans; 2015 Jun; 44(21):9795-804. PubMed ID: 25928181 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity. Camargo TP; Maia FF; Chaves C; de Souza B; Bortoluzzi AJ; Castilho N; Bortolotto T; Terenzi H; Castellano EE; Haase W; Tomkowicz Z; Peralta RA; Neves A J Inorg Biochem; 2015 May; 146():77-88. PubMed ID: 25792035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]