These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37226859)
1. High-resolution genome mapping and functional dissection of chlorogenic acid production in Lonicera maackii. Li R; Xu J; Qi Z; Zhao S; Zhao R; Ge Y; Li R; Kong X; Wu Z; Zhang X; He Q; Zhang Y; Liu PL; Zhu L; Mao JF; Fu C; Komis G; Grünhofer P; Schreiber L; Lin J Plant Physiol; 2023 Aug; 192(4):2902-2922. PubMed ID: 37226859 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica. Peng X; Li W; Wang W; Bai G Planta Med; 2010 Nov; 76(16):1921-6. PubMed ID: 20539970 [TBL] [Abstract][Full Text] [Related]
3. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica. Zhang J; Wu M; Li W; Bai G Plant Physiol Biochem; 2017 Dec; 121():74-79. PubMed ID: 29096175 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome Analysis Reveals the Mechanism Underlying the Production of a High Quantity of Chlorogenic Acid in Young Leaves of Lonicera macranthoides Hand.-Mazz. Chen Z; Tang N; You Y; Lan J; Liu Y; Li Z PLoS One; 2015; 10(9):e0137212. PubMed ID: 26381882 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of key genes involved in chlorogenic acid biosynthetic pathway and characterization of MaHCT from Morus alba L. Zhao L; Wang D; Liu J; Yu X; Wang R; Wei Y; Wen C; Ouyang Z Protein Expr Purif; 2019 Apr; 156():25-35. PubMed ID: 30597215 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb. He L; Xu X; Li Y; Li C; Zhu Y; Yan H; Sun Z; Sun C; Song J; Bi Y; Shen J; Cheng R; Wang Z; Xiao W; Chen S PLoS One; 2013; 8(4):e62922. PubMed ID: 23638167 [TBL] [Abstract][Full Text] [Related]
7. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Tang N; Cao Z; Yang C; Ran D; Wu P; Gao H; He N; Liu G; Chen Z Plant Sci; 2021 Jul; 308():110924. PubMed ID: 34034872 [TBL] [Abstract][Full Text] [Related]
8. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.). Escamilla-Treviño LL; Shen H; Hernandez T; Yin Y; Xu Y; Dixon RA Plant Mol Biol; 2014 Mar; 84(4-5):565-76. PubMed ID: 24190737 [TBL] [Abstract][Full Text] [Related]
9. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes. Yuan Y; Wang Z; Jiang C; Wang X; Huang L Gene; 2014 Jan; 534(2):408-16. PubMed ID: 23085319 [TBL] [Abstract][Full Text] [Related]
10. Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz. Chen Y; Xu N; Du L; Zhang J; Chen R; Zhu Q; Li W; Wu C; Peng G; Rao L; Wang Q Plant Physiol Biochem; 2023 Mar; 196():793-806. PubMed ID: 36848865 [TBL] [Abstract][Full Text] [Related]
11. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. Comino C; Hehn A; Moglia A; Menin B; Bourgaud F; Lanteri S; Portis E BMC Plant Biol; 2009 Mar; 9():30. PubMed ID: 19292932 [TBL] [Abstract][Full Text] [Related]
12. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. Comino C; Lanteri S; Portis E; Acquadro A; Romani A; Hehn A; Larbat R; Bourgaud F BMC Plant Biol; 2007 Mar; 7():14. PubMed ID: 17374149 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and metabolomic analyses provide insights into the biosynthesis of chlorogenic acids in Lonicera macranthoides Hand.-Mazz. Pan Y; Zhao X; Wu XL; Wang Y; Tan J; Chen DX PLoS One; 2021; 16(5):e0251390. PubMed ID: 34038434 [TBL] [Abstract][Full Text] [Related]
14. Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes. Niu FX; Yan ZB; Huang YB; Liu JZ J Agric Food Chem; 2021 Jul; 69(28):7938-7947. PubMed ID: 34237214 [TBL] [Abstract][Full Text] [Related]
15. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. Kim BG; Jung WD; Mok H; Ahn JH Microb Cell Fact; 2013 Feb; 12():15. PubMed ID: 23383718 [TBL] [Abstract][Full Text] [Related]
16. Integrated Analysis of the Transcriptome and Metabolome of Cadena-Zamudio JD; Nicasio-Torres P; Monribot-Villanueva JL; Guerrero-Analco JA; Ibarra-Laclette E Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066422 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of critical genes expression of chlorogenic acid and luteolin biosyntheses in Lonicera confusa]. Qin SS; Huang LQ; Yuan Y; Yu LY Zhongguo Zhong Yao Za Zhi; 2014 Jul; 39(13):2469-72. PubMed ID: 25276965 [TBL] [Abstract][Full Text] [Related]
18. Dual catalytic activity of hydroxycinnamoyl-coenzyme A quinate transferase from tomato allows it to moonlight in the synthesis of both mono- and dicaffeoylquinic acids. Moglia A; Lanteri S; Comino C; Hill L; Knevitt D; Cagliero C; Rubiolo P; Bornemann S; Martin C Plant Physiol; 2014 Dec; 166(4):1777-87. PubMed ID: 25301886 [TBL] [Abstract][Full Text] [Related]
19. Engineering plants with increased levels of the antioxidant chlorogenic acid. Niggeweg R; Michael AJ; Martin C Nat Biotechnol; 2004 Jun; 22(6):746-54. PubMed ID: 15107863 [TBL] [Abstract][Full Text] [Related]
20. Uncovering the Role of Hydroxycinnamoyl Transferase in Boosting Chlorogenic Acid Accumulation in Liu Z; Zhu X; Mohsin A; Sun H; Du L; Yin Z; Zhuang Y; Guo M Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]