These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37227530)
1. Proxy modeling approach to evaluate groundwater recharge potentiality zones in the data scarce area of upper Blue Nile Basin, Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):726. PubMed ID: 37227530 [TBL] [Abstract][Full Text] [Related]
2. Groundwater potential delineation using geodetector based convolutional neural network in the Gunabay watershed of Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Res; 2024 Feb; 242():117790. PubMed ID: 38036202 [TBL] [Abstract][Full Text] [Related]
3. Potential risk assessment due to groundwater quality deterioration and quantifying the major influencing factors using geographical detectors in the Gunabay watershed of Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):753. PubMed ID: 37247114 [TBL] [Abstract][Full Text] [Related]
4. Estimation of groundwater recharge variability using a GIS-based distributed water balance model in Makutupora basin, Tanzania. Kisiki CP; Ayenew T; Mjemah IC Heliyon; 2023 Apr; 9(4):e15117. PubMed ID: 37151620 [TBL] [Abstract][Full Text] [Related]
5. Impact of land-use dynamics and climate change scenarios on Groundwater recharge in the case of Anger watershed, Ethiopia. Chuko FW; Abdissa AG Heliyon; 2023 Aug; 9(8):e18467. PubMed ID: 37554792 [TBL] [Abstract][Full Text] [Related]
6. Groundwater recharge estimation using WetSpass-M and MTBS leveraging from HydroOffice and WHAT tools for baseflow in Weyib watershed, Ethiopia. Aredo MR; Lohani TK; Mohammed AK Environ Monit Assess; 2024 May; 196(6):532. PubMed ID: 38727964 [TBL] [Abstract][Full Text] [Related]
7. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Singh A; Panda SN; Kumar KS; Sharma CS Environ Manage; 2013 Jul; 52(1):61-71. PubMed ID: 23775493 [TBL] [Abstract][Full Text] [Related]
8. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
9. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
10. Delineating groundwater potential zones using integrated remote sensing and GIS in Lahore, Pakistan. Yousaf B; Javid K; Mahmood S; Habib W; Hussain S Environ Monit Assess; 2024 Sep; 196(10):884. PubMed ID: 39225827 [TBL] [Abstract][Full Text] [Related]
11. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia. Yenehun A; Nigate F; Belay AS; Desta MT; Van Camp M; Walraevens K Sci Total Environ; 2020 Dec; 748():142243. PubMed ID: 33113708 [TBL] [Abstract][Full Text] [Related]
12. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
13. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Chi G; Su X; Lyu H; Li H; Xu G; Zhang Y Environ Res; 2022 Sep; 212(Pt A):113104. PubMed ID: 35381262 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the spatial-temporal distribution of groundwater recharge in data-scarce large-scale African river basin. Gelebo AH; Kasiviswanathan KS; Khare D Environ Monit Assess; 2022 Feb; 194(3):157. PubMed ID: 35133509 [TBL] [Abstract][Full Text] [Related]
15. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
16. Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique. Nowreen S; Newton IH; Zzaman RU; Islam AKMS; Islam GMT; Alam MS Environ Monit Assess; 2021 Jan; 193(1):24. PubMed ID: 33389182 [TBL] [Abstract][Full Text] [Related]
17. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
18. Identification and mapping of groundwater recharge zones using multi influencing factor and analytical hierarchy process. Meng F; Khan MI; Naqvi SAA; Sarwar A; Islam F; Ali M; Tariq A; Ullah S; Soufan W; Faraj TK Sci Rep; 2024 Aug; 14(1):19240. PubMed ID: 39164369 [TBL] [Abstract][Full Text] [Related]
19. Appraisal of groundwater recharge in Neelum watershed (Upper Indus Basin) using geospatial water balance technique. Khan FY; Ashraf A; Akhter G; Baig MA; Baig SA Sci Total Environ; 2021 Sep; 785():147318. PubMed ID: 33932667 [TBL] [Abstract][Full Text] [Related]
20. Geospatial and multi-criteria decision approach of groundwater potential zone identification in Cuma sub-basin, Southern Ethiopia. Hagos YG; Andualem TG Heliyon; 2021 Sep; 7(9):e07963. PubMed ID: 34541360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]