BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37227641)

  • 1. Algal sorbents and prospects for their application in the sustainable recovery of rare earth elements from E-waste.
    Pinto J; Colónia J; Abdolvaseei A; Vale C; Henriques B; Pereira E
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74521-74543. PubMed ID: 37227641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE).
    Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rare earth elements (REE) for the removal and recovery of phosphorus: A review.
    Kunhikrishnan A; Rahman MA; Lamb D; Bolan NS; Saggar S; Surapaneni A; Chen C
    Chemosphere; 2022 Jan; 286(Pt 2):131661. PubMed ID: 34426135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage.
    Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML
    J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives.
    Ambaye TG; Vaccari M; Castro FD; Prasad S; Rtimi S
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36052-36074. PubMed ID: 32617815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance.
    Middleton A; Hedin BC; Hsu-Kim H
    Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molding the future: Optimization of bioleaching of rare earth elements from electronic waste by Penicillium expansum and insights into its mechanism.
    Gonzalez Baez A; Muñoz LP; Timmermans MJ; Garelick H; Purchase D
    Bioresour Technol; 2024 Jun; 402():130750. PubMed ID: 38685515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A geological reconnaissance of electrical and electronic waste as a source for rare earth metals.
    Mueller SR; Wäger PA; Widmer R; Williams ID
    Waste Manag; 2015 Nov; 45():226-34. PubMed ID: 25957937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling.
    Wang S; Xiong Z; Wang L; Yang X; Yan X; Li Y; Zhang C; Liang T
    Environ Pollut; 2022 Sep; 309():119717. PubMed ID: 35810987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global demand for rare earth resources and strategies for green mining.
    Dutta T; Kim KH; Uchimiya M; Kwon EE; Jeon BH; Deep A; Yun ST
    Environ Res; 2016 Oct; 150():182-190. PubMed ID: 27295408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of greener approaches for rare earth elements recovery from mineral wastes.
    Tuncay G; Yuksekdag A; Mutlu BK; Koyuncu I
    Environ Pollut; 2024 Jun; 357():124379. PubMed ID: 38885830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder.
    Giese EC
    MRS Energy Sustain; 2022; 9(2):494-500. PubMed ID: 37520803
    [No Abstract]   [Full Text] [Related]  

  • 14. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.
    Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K
    Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Battery related cobalt and REE flows in WEEE treatment.
    Sommer P; Rotter VS; Ueberschaar M
    Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles.
    Brewer A; Dror I; Berkowitz B
    Chemosphere; 2022 Jan; 287(Pt 2):132217. PubMed ID: 34826916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the Circular Economy of Rare Earth Elements: A Review of Abundance, Extraction, Applications, and Environmental Impacts.
    Dang DH; Thompson KA; Ma L; Nguyen HQ; Luu ST; Duong MTN; Kernaghan A
    Arch Environ Contam Toxicol; 2021 Nov; 81(4):521-530. PubMed ID: 34170356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a New Phosphonate-Based Sorbent and Characterization of Its Interactions with Lanthanum (III) and Terbium (III).
    Wei Y; Salih KAM; Hamza MF; Fujita T; Rodríguez-Castellón E; Guibal E
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources.
    Danouche M; Bounaga A; Oulkhir A; Boulif R; Zeroual Y; Benhida R; Lyamlouli K
    Sci Total Environ; 2024 Feb; 912():168811. PubMed ID: 38030017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery.
    Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.