These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37227757)

  • 1. Maximum Spreading Diameter of Bouncing Droplets at Ultralow Weber Numbers.
    Liu Y; Liu Y; Chen M
    Langmuir; 2023 Jun; 39(22):7922-7929. PubMed ID: 37227757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation on the bouncing dynamics of a liquid marble during the impact on a hydrophilic surface.
    Akbari MJ; Bijarchi MA; Shafii MB
    J Colloid Interface Sci; 2024 May; 662():637-652. PubMed ID: 38367581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings.
    Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y
    Langmuir; 2020 Aug; 36(32):9608-9615. PubMed ID: 32787135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rebounding suppression of droplet impact on hot surfaces: effect of surface temperature and concaveness.
    Jowkar S; Morad MR
    Soft Matter; 2019 Jan; 15(5):1017-1026. PubMed ID: 30657147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical consideration of liquid droplet impingement on solid surfaces.
    Yonemoto Y; Kunugi T
    Sci Rep; 2017 May; 7(1):2362. PubMed ID: 28539616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact Dynamics of a Single Droplet on Hydrophobic Cylinders: A Lattice Boltzmann Study.
    Zhang LZ; Xu SY; Wang YF; Yang YR; Zheng SF; Gao SR; Wang XD; Lee DJ
    Langmuir; 2022 Oct; 38(39):11860-11872. PubMed ID: 36130147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universality of Scaling Laws Governing Contact and Spreading Time Spans of Bouncing Liquid Marbles and its Physical Origin.
    Kaushal A; Shoval S; Binks BP; Bormashenko E
    Langmuir; 2023 Sep; 39(35):12488-12496. PubMed ID: 37604671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces.
    Su J; Legchenkova I; Liu C; Lu C; Ma G; Bormashenko E; Liu Y
    Langmuir; 2020 Jan; 36(2):534-539. PubMed ID: 31880946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regimes of Head-On Collisions of Equal-Sized Binary Droplets.
    Zhang YR; Luo KH
    Langmuir; 2019 Jul; 35(27):8896-8902. PubMed ID: 31244244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of droplet impact on a flexible substrate.
    Xiong Y; Huang H; Lu XY
    Phys Rev E; 2020 May; 101(5-1):053107. PubMed ID: 32575301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental Study on Complete Droplet Rebound from Soft Surfaces: Critical Weber Numbers, Maximum Spreading, and Contact Time.
    Yang L; Liu X; Wang J; Zhang P
    Langmuir; 2024 Jan; 40(4):2165-2173. PubMed ID: 38232322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Impact and Spreading on Inclined Surfaces.
    Srivastava T; Jena SK; Kondaraju S
    Langmuir; 2021 Nov; 37(46):13737-13745. PubMed ID: 34779208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singular jets during droplet impact on superhydrophobic surfaces.
    Peng X; Wang T; Jia F; Sun K; Li Z; Che Z
    J Colloid Interface Sci; 2023 Dec; 651():870-882. PubMed ID: 37573733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Viscous Droplets on Superamphiphobic Surfaces.
    Zhao B; Wang X; Zhang K; Chen L; Deng X
    Langmuir; 2017 Jan; 33(1):144-151. PubMed ID: 27966980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet impact on pillar-arrayed non-wetting surfaces.
    Wang LZ; Zhou A; Zhou JZ; Chen L; Yu YS
    Soft Matter; 2021 Jun; 17(24):5932-5940. PubMed ID: 34041518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.