BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37227792)

  • 21. Mode of interaction of altretamine with calf thymus DNA: biophysical insights.
    Goswami S; Ghosh R; Prasanthan P; Kishore N
    J Biomol Struct Dyn; 2023 Jun; 41(9):3728-3740. PubMed ID: 35343872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic, electrochemical and molecular docking study of the binding interaction of a small molecule 5H-naptho[2,1-f][1,2] oxathieaphine 2,2-dioxide with calf thymus DNA.
    Mukherjee A; Mondal S; Singh B
    Int J Biol Macromol; 2017 Aug; 101():527-535. PubMed ID: 28302468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of one anthraquinone derivative with ctDNA analyzed by spectroscopic and modeling methods.
    Cui Y; Fu Z; Geng S; Zhang G; Cui F
    J Fluoresc; 2014 Sep; 24(5):1389-96. PubMed ID: 24957254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches.
    Ahmad I; Ahmad A; Ahmad M
    Phys Chem Chem Phys; 2016 Mar; 18(9):6476-85. PubMed ID: 26862600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of DNA-binding properties of lafutidine as adjuvant anticancer agent to calf thymus DNA using multi-spectroscopic approaches, NMR relaxation data, molecular docking and dynamical simulation.
    Yang H; Tang P; Tang B; Huang Y; He J; Li S; Li H
    Int J Biol Macromol; 2017 Jun; 99():79-87. PubMed ID: 28235605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the interaction of tepotinib with calf thymus DNA using molecular dynamics simulation and multispectroscopic techniques.
    Amir M; Aamir Qureshi M; Khan A; Nayeem SM; Ayoub Malik W; Javed S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123678. PubMed ID: 38039637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA.
    Li S; Pan J; Zhang G; Xu J; Gong D
    Int J Biol Macromol; 2017 Aug; 101():736-746. PubMed ID: 28356236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA.
    Shi JH; Zhou KL; Lou YY; Pan DQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():14-22. PubMed ID: 29212044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA.
    Tao M; Zhang G; Pan J; Xiong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():28-37. PubMed ID: 26571092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding characteristics of sodium saccharin with calf thymus DNA in vitro.
    Zhang G; Wang L; Zhou X; Li Y; Gong D
    J Agric Food Chem; 2014 Jan; 62(4):991-1000. PubMed ID: 24437661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies.
    Wani TA; Alsaif N; Bakheit AH; Zargar S; Al-Mehizia AA; Khan AA
    Bioorg Chem; 2020 Jul; 100():103957. PubMed ID: 32470763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison on binding interactions of quercetin and its metal complexes with calf thymus DNA by spectroscopic techniques and viscosity measurement.
    Luo H; Liang Y; Zhang H; Liu Y; Xiao Q; Huang S
    J Mol Recognit; 2021 Nov; 34(11):e2933. PubMed ID: 34432328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking.
    Shi JH; Chen J; Wang J; Zhu YY
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():443-50. PubMed ID: 25311519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and computational studies on the effects of valganciclovir as an antiviral drug on calf thymus DNA.
    Shahabadi N; Pourfoulad M; Moghadam NH
    Nucleosides Nucleotides Nucleic Acids; 2017 Jan; 36(1):31-48. PubMed ID: 27759493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA.
    Sarwar T; Husain MA; Rehman SU; Ishqi HM; Tabish M
    Mol Biosyst; 2015 Feb; 11(2):522-31. PubMed ID: 25424306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the binding mode of psoralen to calf thymus DNA.
    Zhou X; Zhang G; Wang L
    Int J Biol Macromol; 2014 Jun; 67():228-37. PubMed ID: 24685466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA.
    Chai J; Wang J; Xu Q; Hao F; Liu R
    Mol Biosyst; 2012 Jul; 8(7):1902-7. PubMed ID: 22610465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling.
    Zhang Y; Zhang G; Fu P; Ma Y; Zhou J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():1012-9. PubMed ID: 22944149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.