These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37229527)
1. High-Performance Zhao D; Peng S; Xiao H; Li Q; Chai Y; Sun H; Liu R; Yao L; Ma L ACS Appl Bio Mater; 2023 Jun; 6(6):2137-2144. PubMed ID: 37229527 [TBL] [Abstract][Full Text] [Related]
2. T Li J; You J; Wu C; Dai Y; Shi M; Dong L; Xu K Int J Nanomedicine; 2018; 13():4607-4625. PubMed ID: 30127609 [TBL] [Abstract][Full Text] [Related]
3. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377 [TBL] [Abstract][Full Text] [Related]
4. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Xiao N; Gu W; Wang H; Deng Y; Shi X; Ye L J Colloid Interface Sci; 2014 Mar; 417():159-65. PubMed ID: 24407672 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Yang M; Gao L; Liu K; Luo C; Wang Y; Yu L; Peng H; Zhang W Talanta; 2015 Jan; 131():661-5. PubMed ID: 25281156 [TBL] [Abstract][Full Text] [Related]
6. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents. Li F; Zhi D; Luo Y; Zhang J; Nan X; Zhang Y; Zhou W; Qiu B; Wen L; Liang G Nanoscale; 2016 Jul; 8(25):12826-33. PubMed ID: 27297334 [TBL] [Abstract][Full Text] [Related]
7. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Zhou T; Zhang S; Zhang L; Jiang T; Wang H; Huang L; Wu H; Fan Z; Jing S Acta Biomater; 2023 Jul; 164():496-510. PubMed ID: 37054962 [TBL] [Abstract][Full Text] [Related]
8. Tumor microenvironment responsive Liang M; Zhou W; Zhang H; Zheng J; Lin J; An L; Yang S J Mater Chem B; 2023 May; 11(19):4203-4210. PubMed ID: 37114335 [TBL] [Abstract][Full Text] [Related]
9. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Zhang W; Liu L; Chen H; Hu K; Delahunty I; Gao S; Xie J Theranostics; 2018; 8(9):2521-2548. PubMed ID: 29721097 [TBL] [Abstract][Full Text] [Related]
10. Engineering manganese ferrite shell on iron oxide nanoparticles for enhanced T Li M; Bao J; Zeng J; Huo L; Shan X; Cheng X; Qiu D; Miao W; Zhu X; Huang G; Ni K; Zhao Z J Colloid Interface Sci; 2022 Nov; 626():364-373. PubMed ID: 35797871 [TBL] [Abstract][Full Text] [Related]
12. Surface Design of Eu-Doped Iron Oxide Nanoparticles for Tuning the Magnetic Relaxivity. Park JC; Lee GT; Kim HK; Sung B; Lee Y; Kim M; Chang Y; Seo JH ACS Appl Mater Interfaces; 2018 Aug; 10(30):25080-25089. PubMed ID: 29989402 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance Lu C; Xu X; Zhang T; Wang Z; Chai Y J Mater Chem B; 2022 Mar; 10(10):1623-1633. PubMed ID: 35191907 [TBL] [Abstract][Full Text] [Related]
14. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging. Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208 [TBL] [Abstract][Full Text] [Related]
15. Optimization of micelle-encapsulated extremely small sized iron oxide nanoparticles as a T1 contrast imaging agent: biodistribution and safety profile. Suh M; Park JY; Ko GB; Kim JY; Hwang DW; Rees L; Conway GE; Doak SH; Kang H; Lee N; Hyeon T; Lee YS; Lee DS J Nanobiotechnology; 2024 Jul; 22(1):419. PubMed ID: 39014410 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Liu XL; Ng CT; Chandrasekharan P; Yang HT; Zhao LY; Peng E; Lv YB; Xiao W; Fang J; Yi JB; Zhang H; Chuang KH; Bay BH; Ding J; Fan HM Adv Healthc Mater; 2016 Aug; 5(16):2092-104. PubMed ID: 27297640 [TBL] [Abstract][Full Text] [Related]
17. Rational Design of Magnetic Nanoparticles as T Geraldes CFGC Molecules; 2024 Mar; 29(6):. PubMed ID: 38542988 [TBL] [Abstract][Full Text] [Related]
18. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995 [TBL] [Abstract][Full Text] [Related]
19. Redox-Sensitive Clustered Ultrasmall Iron Oxide Nanoparticles for Switchable T Ma D; Shi M; Li X; Zhang J; Fan Y; Sun K; Jiang T; Peng C; Shi X Bioconjug Chem; 2020 Feb; 31(2):352-359. PubMed ID: 31693856 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles. Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]