BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37229820)

  • 1. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase.
    Gardner AM; Gardner PR
    J Inorg Biochem; 2023 Aug; 245():112257. PubMed ID: 37229820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin.
    Gardner AM; Gardner PR
    J Biol Chem; 2021; 296():100186. PubMed ID: 33310705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases.
    Gardner PR
    Adv Exp Med Biol; 2023; 1414():45-96. PubMed ID: 36520413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective intermediate-spin iron in O
    Schuth N; Mebs S; Huwald D; Wrzolek P; Schwalbe M; Hemschemeier A; Haumann M
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8556-8561. PubMed ID: 28739893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Electron Density of the Heme Fe Atom on the Nature of Fe-O
    Yamamoto Y; Hasegawa K; Shibata T; Momotake A; Ogura T; Yanagisawa S; Neya S; Suzuki A; Kobayashi Y; Saito M; Seto M; Ohta T
    Inorg Chem; 2021 Jan; 60(2):1021-1027. PubMed ID: 33356193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nuclear Resonance Vibrational Spectroscopic Study of Oxy Myoglobins Reconstituted with Chemically Modified Heme Cofactors: Insights into the Fe-O
    Ohta T; Shibata T; Kobayashi Y; Yoda Y; Ogura T; Neya S; Suzuki A; Seto M; Yamamoto Y
    Biochemistry; 2018 Dec; 57(48):6649-6652. PubMed ID: 30422640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.
    Yoo BK; Kruglik SG; Lamarre I; Martin JL; Negrerie M
    J Phys Chem B; 2012 Apr; 116(13):4106-14. PubMed ID: 22394099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein.
    Chen H; Ikeda-Saito M; Shaik S
    J Am Chem Soc; 2008 Nov; 130(44):14778-90. PubMed ID: 18847206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates.
    Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ
    FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10).
    Brunori M; CutruzzolĂ  F; Savino C; Travaglini-Allocatelli C; Vallone B; Gibson QH
    Biophys J; 1999 Mar; 76(3):1259-69. PubMed ID: 10049310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases.
    Gardner PR
    J Inorg Biochem; 2005 Jan; 99(1):247-66. PubMed ID: 15598505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of O2 and NO to heme in heme-nitric oxide/oxygen-binding (H-NOX) proteins. A theoretical study.
    Liao MS; Huang MJ; Watts JD
    J Phys Chem B; 2013 Sep; 117(35):10103-14. PubMed ID: 23926882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis.
    Gardner AM; Martin LA; Gardner PR; Dou Y; Olson JS
    J Biol Chem; 2000 Apr; 275(17):12581-9. PubMed ID: 10777548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific modification of structure and property of myoglobin by the formation of tetrazolylhistidine 64(E7). Reaction of the modified myoglobin with molecular oxygen.
    Shiro Y; Iwata T; Makino R; Fujii M; Isogai Y; Iizuka T
    J Biol Chem; 1993 Sep; 268(27):19983-90. PubMed ID: 8397193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling ligand binding in myoglobin by mutagenesis.
    Draghi F; Miele AE; Travaglini-Allocatelli C; Vallone B; Brunori M; Gibson QH; Olson JS
    J Biol Chem; 2002 Mar; 277(9):7509-19. PubMed ID: 11744723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity.
    Samanta S; Sengupta S; Biswas S; Ghosh S; Barman S; Dey A
    J Am Chem Soc; 2023 Dec; 145(48):26477-26486. PubMed ID: 37993986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.