BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37229942)

  • 21. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanogapped Au
    Shao B; Ma X; Zhao S; Lv Y; Hun X; Wang H; Wang Z
    Anal Chim Acta; 2018 Nov; 1033():165-172. PubMed ID: 30172322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale assembly of geometrically diverse metal nanoparticles-based 3D plasmonic DNA nanostructures for SERS detection of PNK in cancer cells.
    Li X; Liu B; Liu L; Yuan H; Li Y; Zhou B; Sun J; Li C; Xue Q
    Talanta; 2024 Jan; 266(Pt 1):124958. PubMed ID: 37499360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recyclable SERS-Based Immunoassay Guided by Photocatalytic Performance of Fe
    Du Y; Liu H; Tian Y; Gu C; Zhao Z; Zeng S; Jiang T
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32188036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors.
    Fu Q; Liu HL; Wu Z; Liu A; Yao C; Li X; Xiao W; Yu S; Luo Z; Tang Y
    J Nanobiotechnology; 2015 Nov; 13():81. PubMed ID: 26577252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.
    Li A; Tang L; Song D; Song S; Ma W; Xu L; Kuang H; Wu X; Liu L; Chen X; Xu C
    Nanoscale; 2016 Jan; 8(4):1873-8. PubMed ID: 26732202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal Nanoparticles/MoS
    Er E; Sánchez-Iglesias A; Silvestri A; Arnaiz B; Liz-Marzán LM; Prato M; Criado A
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8823-8831. PubMed ID: 33583183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of Fe
    Han D; Li B; Chen Y; Wu T; Kou Y; Xue X; Chen L; Liu Y; Duan Q
    Nanotechnology; 2019 Nov; 30(46):465703. PubMed ID: 31476137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.
    Bi X; Li X; Chen D; Du X
    ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles.
    Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
    Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S
    Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs.
    Chen B; Meng G; Zhou F; Huang Q; Zhu C; Hu X; Kong M
    Nanotechnology; 2014 Apr; 25(14):145605. PubMed ID: 24633265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering.
    Huang Z; Meng G; Huang Q; Yang Y; Zhu C; Tang C
    Adv Mater; 2010 Oct; 22(37):4136-9. PubMed ID: 20803760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps.
    Bock S; Choi YS; Kim M; Yun Y; Pham XH; Kim J; Seong B; Kim W; Jo A; Ham KM; Lee SG; Lee SH; Kang H; Choi HS; Jeong DH; Chang H; Kim DE; Jun BH
    J Nanobiotechnology; 2022 Mar; 20(1):130. PubMed ID: 35279134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique.
    Yaseen T; Pu H; Sun DW
    Talanta; 2019 May; 196():537-545. PubMed ID: 30683402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced Raman spectroscopy for detection of fentanyl and its analogs by using Ag-Au nanoparticles.
    Qin Y; Yin S; Chen M; Yao W; He Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121923. PubMed ID: 36183535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.