These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37230048)
1. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. Liang L; Liu M; Elefteriades J; Sun W Comput Methods Programs Biomed; 2023 Aug; 238():107616. PubMed ID: 37230048 [TBL] [Abstract][Full Text] [Related]
2. PyTorch-FEA: Autograd-enabled Finite Element Analysis Methods with Applications for Biomechanical Analysis of Human Aorta. Liang L; Liu M; Elefteriades J; Sun W bioRxiv; 2023 Mar; ():. PubMed ID: 37034587 [TBL] [Abstract][Full Text] [Related]
3. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics. Liang L; Liu M; Elefteriades J; Sun W Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344 [TBL] [Abstract][Full Text] [Related]
4. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications for Biomechanical Analysis of Human Aorta. Liang L; Liu M; Elefteriades J; Sun W bioRxiv; 2023 Apr; ():. PubMed ID: 37066215 [TBL] [Abstract][Full Text] [Related]
5. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. Erhart P; Grond-Ginsbach C; Hakimi M; Lasitschka F; Dihlmann S; Böckler D; Hyhlik-Dürr A J Endovasc Ther; 2014 Aug; 21(4):556-64. PubMed ID: 25101586 [TBL] [Abstract][Full Text] [Related]
6. Finite-Element Biomechanical-Simulated Analysis of the Nasolabial Fold. Chen G; Lu X; Yin N J Craniofac Surg; 2020; 31(2):492-496. PubMed ID: 31842067 [TBL] [Abstract][Full Text] [Related]
7. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Erhart P; Hyhlik-Dürr A; Geisbüsch P; Kotelis D; Müller-Eschner M; Gasser TC; von Tengg-Kobligk H; Böckler D Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):239-45. PubMed ID: 25542592 [TBL] [Abstract][Full Text] [Related]
8. magnum.np: a PyTorch based GPU enhanced finite difference micromagnetic simulation framework for high level development and inverse design. Bruckner F; Koraltan S; Abert C; Suess D Sci Rep; 2023 Jul; 13(1):12054. PubMed ID: 37491598 [TBL] [Abstract][Full Text] [Related]
9. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. Peirlinck M; De Beule M; Segers P; Rebelo N J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406 [TBL] [Abstract][Full Text] [Related]
10. A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta. Liang L; Liu M; Martin C; Sun W Int J Numer Method Biomed Eng; 2018 May; ():e3103. PubMed ID: 29740974 [TBL] [Abstract][Full Text] [Related]
11. Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. Lindquist Liljeqvist M; Hultgren R; Siika A; Gasser TC; Roy J J Vasc Surg; 2017 Apr; 65(4):1014-1021.e4. PubMed ID: 28342508 [TBL] [Abstract][Full Text] [Related]
12. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. Liang L; Liu M; Martin C; Sun W J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367242 [TBL] [Abstract][Full Text] [Related]
13. Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics. Oefner C; Herrmann S; Kebbach M; Lange HE; Kluess D; Woiczinski M Med Eng Phys; 2021 Jun; 92():25-32. PubMed ID: 34167708 [TBL] [Abstract][Full Text] [Related]
14. A guide to finite element analysis models of the spine for clinicians. Wang MC; Kiapour A; Massaad E; Shin JH; Yoganandan N J Neurosurg Spine; 2024 Jan; 40(1):38-44. PubMed ID: 37856396 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical Imaging Markers as Predictors of Abdominal Aortic Aneurysm Growth or Rupture: A Systematic Review. Indrakusuma R; Jalalzadeh H; Planken RN; Marquering HA; Legemate DA; Koelemay MJ; Balm R Eur J Vasc Endovasc Surg; 2016 Oct; 52(4):475-486. PubMed ID: 27558090 [TBL] [Abstract][Full Text] [Related]
16. Finite-element modeling and analysis in nanomedicine and dentistry. Choi AH; Conway RC; Ben-Nissan B Nanomedicine (Lond); 2014 Aug; 9(11):1681-95. PubMed ID: 25321169 [TBL] [Abstract][Full Text] [Related]
17. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta. Liang L; Mao W; Sun W J Biomech; 2020 Jan; 99():109544. PubMed ID: 31806261 [TBL] [Abstract][Full Text] [Related]
18. Dynamic seal at the aortic neck-endograft interface studied using a novel method of cohesive zone modeling. Pocivavsek L; Milner R J Vasc Surg; 2020 Aug; 72(2):703-713.e3. PubMed ID: 31727454 [TBL] [Abstract][Full Text] [Related]
19. The application of finite element analysis in the skull biomechanics and dentistry. Prado FB; Rossi AC; Freire AR; Ferreira Caria PH Indian J Dent Res; 2014; 25(3):390-7. PubMed ID: 25099001 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of human penile tissue properties using experimental testing combined with multi-target inverse finite element modelling. Akbarzadeh Khorshidi M; Bose S; Watschke B; Mareena E; Lally C Acta Biomater; 2024 Aug; 184():226-238. PubMed ID: 38945188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]