BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37230294)

  • 1. Immune checkpoint-targeted drug conjugates: A promising tool for remodeling tumor immune microenvironment.
    Choi J; Jang H; Choi J; Choi Y; Yang Y; Shim MK; Kim SH
    J Control Release; 2023 Jul; 359():85-96. PubMed ID: 37230294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade.
    Choi Y; Seok SH; Yoon HY; Ryu JH; Kwon IC
    Adv Drug Deliv Rev; 2024 Jun; 209():115306. PubMed ID: 38626859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery.
    Kyu Shim M; Yang S; Sun IC; Kim K
    Adv Drug Deliv Rev; 2022 Apr; 183():114177. PubMed ID: 35245568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting Checkpoint Immunotherapy with Biomaterials.
    Liu L; Pan Y; Zhao C; Huang P; Chen X; Rao L
    ACS Nano; 2023 Feb; 17(4):3225-3258. PubMed ID: 36746639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology.
    Liu Z; Xiang Y; Zheng Y; Kang X
    Front Immunol; 2022; 13():1027124. PubMed ID: 36341334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives.
    Nicolò E; Giugliano F; Ascione L; Tarantino P; Corti C; Tolaney SM; Cristofanilli M; Curigliano G
    Cancer Treat Rev; 2022 May; 106():102395. PubMed ID: 35468539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect?
    Gerber HP; Sapra P; Loganzo F; May C
    Biochem Pharmacol; 2016 Feb; 102():1-6. PubMed ID: 26686577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy.
    Shim MK; Song SK; Jeon SI; Hwang KY; Kim K
    Expert Opin Drug Deliv; 2022 Jun; 19(6):641-652. PubMed ID: 35603410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy.
    Zhou L; Zhang P; Wang H; Wang D; Li Y
    Acc Chem Res; 2020 Sep; 53(9):1761-1772. PubMed ID: 32819102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EZH2, a prominent orchestrator of genetic and epigenetic regulation of solid tumor microenvironment and immunotherapy.
    Sun S; Yu F; Xu D; Zheng H; Li M
    Biochim Biophys Acta Rev Cancer; 2022 Mar; 1877(2):188700. PubMed ID: 35217116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer.
    Piening A; Ebert E; Khojandi N; Alspach E; Teague RM
    Front Immunol; 2022; 13():1022732. PubMed ID: 36582225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy.
    Shang Q; Dong Y; Su Y; Leslie F; Sun M; Wang F
    Adv Drug Deliv Rev; 2022 Jun; 185():114308. PubMed ID: 35472398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying immune-related adverse events during checkpoint immunotherapy.
    Zhou X; Chen X; Han L; Liu H
    Clin Sci (Lond); 2022 May; 136(10):771-785. PubMed ID: 35621125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.