BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37230458)

  • 1. In vitro xanthine oxidase inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3'-sulfonate.
    Wang X; Cui Z; Luo Y; Huang Y; Yang X
    Food Chem Toxicol; 2023 Jul; 177():113854. PubMed ID: 37230458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.
    Wang Y; Zhang G; Pan J; Gong D
    J Agric Food Chem; 2015 Jan; 63(2):526-34. PubMed ID: 25539132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid:
    Chen J; Yu S; He Z; Zhu D; Cai X; Ruan Z; Jin N
    Curr Pharm Biotechnol; 2024; 25(4):477-487. PubMed ID: 37345239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters.
    Zhang Y; Li Y; Li C; Zhao Y; Xu L; Ma S; Lin F; Xie Y; An J; Wang S
    Phytomedicine; 2023 Sep; 118():154957. PubMed ID: 37478683
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Gul A; Saad SM; Zafar H; Atia-Tul-Wahab ; Khan KM; Choudhary MI
    Med Chem; 2023; 19(4):384-392. PubMed ID: 35726432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Anti-Hyperuricemic Activity of Xanthine Oxidase Inhibitory Peptides from Pacific White Shrimp and Swimming Crab Based on Molecular Docking Screening.
    Mao Z; Jiang H; Mao X
    J Agric Food Chem; 2023 Jan; 71(3):1620-1627. PubMed ID: 36625439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions.
    He W; Su G; Sun-Waterhouse D; Waterhouse GIN; Zhao M; Liu Y
    Food Chem; 2019 Jan; 272():453-461. PubMed ID: 30309568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia.
    Xie Z; Luo X; Zou Z; Zhang X; Huang F; Li R; Liao S; Liu Y
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3602-3606. PubMed ID: 28655421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3,4-Dihydroxy-5-nitrobenzaldehyde (DHNB) is a potent inhibitor of xanthine oxidase: a potential therapeutic agent for treatment of hyperuricemia and gout.
    Lü JM; Yao Q; Chen C
    Biochem Pharmacol; 2013 Nov; 86(9):1328-37. PubMed ID: 23994369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides.
    Tian Y; Lin L; Zhao M; Peng A; Zhao K
    J Ethnopharmacol; 2021 Apr; 270():113808. PubMed ID: 33450289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation.
    Yan J; Zhang G; Hu Y; Ma Y
    Food Chem; 2013 Dec; 141(4):3766-73. PubMed ID: 23993547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthine oxidase inhibitory activity of nicotino/isonicotinohydrazides: A systematic approach from in vitro, in silico to in vivo studies.
    Zafar H; Hayat M; Saied S; Khan M; Salar U; Malik R; Choudhary MI; Khan KM
    Bioorg Med Chem; 2017 Apr; 25(8):2351-2371. PubMed ID: 28302506
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Mehmood A; Rehman AU; Ishaq M; Zhao L; Li J; Usman M; Zhao L; Rehman A; Zad OD; Wang C
    Comb Chem High Throughput Screen; 2020; 23(9):917-930. PubMed ID: 32342806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Gao J; Liu X; Zhang B; Mao Q; Zhang Z; Zou Q; Dai X; Wang S
    Eur J Med Chem; 2020 Mar; 190():112077. PubMed ID: 32014678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and Inhibition Mechanism of Xanthine Oxidase Inhibitors in Ethanolic Extracts of Chimonanthus salicifolius Hu Leaves.
    Meng W; Lin S; Ouyang K; Chen L; Zhang Y; Wang W
    Chem Biodivers; 2023 Apr; 20(4):e202200480. PubMed ID: 36929603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro.
    Lin S; Zhang G; Pan J; Gong D
    J Photochem Photobiol B; 2015 Dec; 153():463-72. PubMed ID: 26584360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of mycotoxin alternariol as a potential lead compound targeting xanthine oxidase.
    Fan J; Sun S; Lv C; Li Z; Guo M; Yin Y; Wang H; Wang W
    Chem Biol Interact; 2022 Jun; 360():109948. PubMed ID: 35430257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies.
    Ou R; Lin L; Zhao M; Xie Z
    Int J Biol Macromol; 2020 Nov; 162():1526-1535. PubMed ID: 32777423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chalcone derivatives as xanthine oxidase inhibitors: synthesis, binding mode investigation, biological evaluation, and ADMET prediction.
    Yang C; Liu Y; Tu Y; Li L; Du J; Yu D; He P; Wang T; Liu Y; Chen H; Li Y
    Bioorg Chem; 2023 Feb; 131():106320. PubMed ID: 36527991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation.
    Gao J; Zhang Z; Zhang B; Mao Q; Dai X; Zou Q; Lei Y; Feng Y; Wang S
    Bioorg Chem; 2020 Jan; 95():103564. PubMed ID: 31927335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.