BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37230594)

  • 1. Optimizing purification and activity assays of N-terminal methyltransferase complexes.
    Parker HV; Tooley JG; Schaner Tooley CE
    Methods Enzymol; 2023; 684():71-111. PubMed ID: 37230594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13.
    Parker HV; Schaner Tooley CE
    J Biol Chem; 2023 Apr; 299(4):104588. PubMed ID: 36889590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three's a crowd - why did three N-terminal methyltransferases evolve for one job?
    Conner MM; Schaner Tooley CE
    J Cell Sci; 2023 Jan; 136(2):. PubMed ID: 36647772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms.
    Li J; Sun C; Cai W; Li J; Rosen BP; Chen J
    Mutat Res Rev Mutat Res; 2021; 788():108396. PubMed ID: 34893161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Assays for RNA Methyltransferase Activity.
    Haag S; Sloan KE; Höbartner C; Bohnsack MT
    Methods Mol Biol; 2017; 1562():259-268. PubMed ID: 28349466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and direct measurement of methyltransferase activity in about 30 min.
    Hevel JM; Price OM
    Methods; 2020 Mar; 175():3-9. PubMed ID: 31605745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assays for S-adenosylmethionine (AdoMet/SAM)-dependent methyltransferases.
    Wooderchak WL; Zhou ZS; Hevel J
    Curr Protoc Toxicol; 2008 Nov; Chapter 4():Unit4.26. PubMed ID: 23045008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis and application of the methyl analogues of
    Wang W; Dong M
    Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4428-4444. PubMed ID: 38013176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 6. Structural modifications of S-adenosylmethionine.
    Borchardt RT; Shiong Y; Huber JA; Wycpalek AF
    J Med Chem; 1976 Sep; 19(9):1104-10. PubMed ID: 978675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking of Dam methyltransferase with S-adenosyl-methionine.
    Wenzel C; Moulard M; Løbner-Olesen A; Guschlbauer W
    FEBS Lett; 1991 Mar; 280(1):147-51. PubMed ID: 2009958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the recognition unit for G protein methylation.
    Tan EW; Pérez-Sala D; Cañada FJ; Rando RR
    J Biol Chem; 1991 Jun; 266(17):10719-22. PubMed ID: 1904056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NRMT2 is an N-terminal monomethylase that primes for its homologue NRMT1.
    Petkowski JJ; Bonsignore LA; Tooley JG; Wilkey DW; Merchant ML; Macara IG; Schaner Tooley CE
    Biochem J; 2013 Dec; 456(3):453-62. PubMed ID: 24090352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction Catalyzed by GenK, a Cobalamin-Dependent Radical S-Adenosyl-l-methionine Methyltransferase in the Biosynthetic Pathway of Gentamicin, Proceeds with Retention of Configuration.
    Kim HJ; Liu YN; McCarty RM; Liu HW
    J Am Chem Soc; 2017 Nov; 139(45):16084-16087. PubMed ID: 29091410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and efficient method for quantitative measurement of S-adenosyl-L-methionine-dependent methyltransferase activity with protein substrates.
    Suh-Lailam BB; Hevel JM
    Anal Biochem; 2010 Mar; 398(2):218-24. PubMed ID: 19748473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine.
    Powell LM; Dryden DT; Willcock DF; Pain RH; Murray NE
    J Mol Biol; 1993 Nov; 234(1):60-71. PubMed ID: 8230207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases.
    Lashley A; Miller R; Provenzano S; Jarecki SA; Erba P; Salim V
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a monohalomethane-producing enzyme S-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis.
    Ohsawa N; Tsujita M; Morikawa S; Itoh N
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2397-404. PubMed ID: 11791711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and Quantification of Histone Methyltransferase Activity In Vitro.
    Idigo NJ; Voigt P
    Methods Mol Biol; 2022; 2529():43-61. PubMed ID: 35733009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the Methyl Donor
    Aouadi W; Blanjoie A; Vasseur JJ; Debart F; Canard B; Decroly E
    J Virol; 2017 Mar; 91(5):. PubMed ID: 28031370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.
    Chatterjee D; Kudlinzki D; Linhard V; Saxena K; Schieborr U; Gande SL; Wurm JP; Wöhnert J; Abele R; Rogov VV; Dötsch V; Osiewacz HD; Sreeramulu S; Schwalbe H
    J Biol Chem; 2015 Jun; 290(26):16415-30. PubMed ID: 25979334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.