These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37230626)

  • 1. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing.
    Guo Z; Ma C; Xie W; Tang A; Liu W
    Carbohydr Polym; 2023 Sep; 315():121006. PubMed ID: 37230626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers.
    Kim SA; Lee Y; Park K; Park J; An S; Oh J; Kang M; Lee Y; Jo Y; Cho SW; Seo J
    Int J Bioprint; 2023; 9(5):765. PubMed ID: 37555082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.
    Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y
    Small; 2024 Jul; ():e2403052. PubMed ID: 38970551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues.
    Kamdem Tamo A; Doench I; Walter L; Montembault A; Sudre G; David L; Morales-Helguera A; Selig M; Rolauffs B; Bernstein A; Hoenders D; Walther A; Osorio-Madrazo A
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-freezing hydrogel regulated by ice-structuring proteins/cellulose nanofibers system as flexible sensor for winter sports.
    Gao X; Wu J; Wang Y; Wang Y; Zhang Y; Nguyen TT; Guo M
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):131118. PubMed ID: 38522685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels.
    He Y; Yu R; Li X; Zhang M; Zhang Y; Yang X; Zhao X; Huang W
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36286-36294. PubMed ID: 34283559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors.
    Zhang R; Yang A; Yang Y; Zhu Y; Song Y; Li Y; Li J
    Int J Biol Macromol; 2023 Aug; 245():125469. PubMed ID: 37343611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocross-Linkable and Shape-Memory Biomaterial Hydrogel Based on Methacrylated Cellulose Nanofibres.
    Brusentsev Y; Yang P; King AWT; Cheng F; Cortes Ruiz MF; Eriksson JE; Kilpeläinen I; Willför S; Xu C; Wågberg L; Wang X
    Biomacromolecules; 2023 Aug; 24(8):3835-3845. PubMed ID: 37527286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications.
    Deng Z; Qian T; Hang F
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors.
    Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C
    Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications.
    Zhang C; Zheng H; Sun J; Zhou Y; Xu W; Dai Y; Mo J; Wang Z
    Adv Mater; 2022 Jan; 34(2):e2105996. PubMed ID: 34734449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection.
    Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue Adhesive, Conductive, and Injectable Cellulose Hydrogel Ink for On-Skin Direct Writing of Electronics.
    Jin S; Kim Y; Son D; Shin M
    Gels; 2022 May; 8(6):. PubMed ID: 35735680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copolymer-grafted cellulose nanocrystal induced nanocomposite hydrogels with enhanced strength, high elasticity and adhesiveness for flexible strain and pressure sensors.
    Li B; Chen Y; Wu W; Cao X; Luo Z
    Carbohydr Polym; 2023 Oct; 317():121092. PubMed ID: 37364960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing.
    Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A
    Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate.
    Li M; Wang Y; Wei Q; Zhang J; Chen X; An Y
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.