These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37230626)
41. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
42. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. Lu Y; Yue Y; Ding Q; Mei C; Xu X; Wu Q; Xiao H; Han J ACS Appl Mater Interfaces; 2021 Oct; 13(42):50281-50297. PubMed ID: 34637615 [TBL] [Abstract][Full Text] [Related]
43. γ-Irradiation crosslinking of graphene oxide/cellulose nanofiber/poly (acrylic acid) hydrogel as a urea sensing patch. Passornraprasit N; Siripongpreda T; Ninlapruk S; Rodthongkum N; Potiyaraj P Int J Biol Macromol; 2022 Jul; 213():1037-1046. PubMed ID: 35714553 [TBL] [Abstract][Full Text] [Related]
44. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
45. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Guo J; Li Q; Zhang R; Li B; Zhang J; Yao L; Lin Z; Zhang L; Cao X; Duan B Biomacromolecules; 2022 Mar; 23(3):877-888. PubMed ID: 35142493 [TBL] [Abstract][Full Text] [Related]
46. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
47. 3D Printing of pH Indicator Auxetic Hydrogel Skin Wound Dressing. Tsegay F; Hisham M; Elsherif M; Schiffer A; Butt H Molecules; 2023 Jan; 28(3):. PubMed ID: 36771005 [TBL] [Abstract][Full Text] [Related]
48. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
49. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Wu Q; Wei J; Xu B; Liu X; Wang H; Wang W; Wang Q; Liu W Sci Rep; 2017 Jan; 7():41566. PubMed ID: 28134283 [TBL] [Abstract][Full Text] [Related]
50. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. He X; Lu Q Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511 [TBL] [Abstract][Full Text] [Related]
51. Printable hydrogels based on starch and natural rubber latex with high toughness and self-healing capability. Zhao W; Huang B; Zhu L; Feng X; Xu J; Zhang H; Yan S Int J Biol Macromol; 2022 Oct; 218():580-587. PubMed ID: 35878669 [TBL] [Abstract][Full Text] [Related]
53. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel. Luo J; Song T; Han T; Qi H; Liu Q; Wang Q; Song Z; Rojas O Carbohydr Polym; 2024 Mar; 327():121685. PubMed ID: 38171694 [TBL] [Abstract][Full Text] [Related]
54. Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity. Wang MX; Chen YM; Gao Y; Hu C; Hu J; Tan L; Yang Z ACS Appl Mater Interfaces; 2018 Aug; 10(31):26610-26617. PubMed ID: 29989387 [TBL] [Abstract][Full Text] [Related]
55. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform. Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464 [TBL] [Abstract][Full Text] [Related]
56. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics. Shin S; Hyun J ACS Appl Mater Interfaces; 2017 Aug; 9(31):26438-26446. PubMed ID: 28737375 [TBL] [Abstract][Full Text] [Related]
57. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Shin S; Hyun J Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573 [TBL] [Abstract][Full Text] [Related]
58. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. Gong D; Lin Q; Shao Z; Chen X; Yang Y RSC Adv; 2020 Jul; 10(45):27225-27234. PubMed ID: 35515806 [TBL] [Abstract][Full Text] [Related]
59. 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Baniasadi H; Polez RT; Kimiaei E; Madani Z; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2021 Dec; 192():1098-1107. PubMed ID: 34666132 [TBL] [Abstract][Full Text] [Related]
60. DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels. Melilli G; Carmagnola I; Tonda-Turo C; Pirri F; Ciardelli G; Sangermano M; Hakkarainen M; Chiappone A Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]