BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37230937)

  • 1. Increased anti-oxidative action compensates for collagen tissue degeneration in vitiligo dermis.
    Yokoi K; Yasumizu Y; Ohkura N; Shinzawa K; Okuzaki D; Shimoda N; Ando H; Yamada N; Fujimoto M; Tanemura A
    Pigment Cell Melanoma Res; 2023 Sep; 36(5):355-364. PubMed ID: 37230937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway.
    Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z
    Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunolocalization of tenascin-C in vitiligo.
    Abdou AG; Maraee AH; Shoeib MA; Elbana R
    Appl Immunohistochem Mol Morphol; 2012 Oct; 20(5):501-11. PubMed ID: 22495383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histopathologic features in vitiligo.
    Kim YC; Kim YJ; Kang HY; Sohn S; Lee ES
    Am J Dermatopathol; 2008 Apr; 30(2):112-6. PubMed ID: 18360112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway.
    Li XS; Tang XY; Su W; Li X
    Immunopharmacol Immunotoxicol; 2020 Dec; 42(6):594-603. PubMed ID: 33045867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occludin Promotes Adhesion of CD8
    Zou P; Xiao Y; Deng Q; Shi Y; You R; Pi Z; Liu J; Zhan Y; Zeng Q; Zeng Z; Xiao R
    Oxid Med Cell Longev; 2022; 2022():6732972. PubMed ID: 35222802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitiligo vs. hypopigmented mycosis fungoides (histopathological and immunohistochemical study, univariate analysis).
    El-Darouti MA; Marzouk SA; Azzam O; Fawzi MM; Abdel-Halim MR; Zayed AA; Leheta TM
    Eur J Dermatol; 2006; 16(1):17-22. PubMed ID: 16436337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of non-melanocytic skin cells in vitiligo.
    Bastonini E; Bellei B; Filoni A; Kovacs D; Iacovelli P; Picardo M
    Exp Dermatol; 2019 Jun; 28(6):667-673. PubMed ID: 30582762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.
    Arowojolu OA; Orlow SJ; Elbuluk N; Manga P
    Exp Dermatol; 2017 Jul; 26(7):637-644. PubMed ID: 28370349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Elastin Fibers and Melanocyte Loss in Vitiliginous Skin Are Restored after Repigmentation by Phototherapy and/or Autologous Minigraft Transplantation.
    Hirobe T; Enami H
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of extracellular matrix proteins in the lesional skin of vitiligo patients.
    Rani S; Pervaiz N; Parsad D; Kumar R
    Arch Dermatol Res; 2023 Oct; 315(8):2393-2402. PubMed ID: 37209167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Dickkopf1 on the senescence of melanocytes: in vitro study.
    Rani S; Chauhan R; Parsad D; Kumar R
    Arch Dermatol Res; 2018 May; 310(4):343-350. PubMed ID: 29442138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death.
    Lin Y; Ding Y; Wu Y; Yang Y; Liu Z; Xiang L; Zhang C
    Exp Dermatol; 2024 Jan; 33(1):e14856. PubMed ID: 37338012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo.
    Cui T; Zhang W; Li S; Chen X; Chang Y; Yi X; Kang P; Yang Y; Chen J; Liu L; Jian Z; Li K; Wang G; Gao T; Song P; Li C
    J Invest Dermatol; 2019 Oct; 139(10):2174-2184.e4. PubMed ID: 30998983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ISG15-USP18 Dysregulation by Oxidative Stress Promotes IFN-γ Secretion from CD8+ T Cells in Vitiligo.
    Lee EJ; Kim JY; Yeo JH; Park S; Bae YJ; Kwon IJ; Seong SH; Lee J; Oh SH
    J Invest Dermatol; 2024 Feb; 144(2):273-283.e11. PubMed ID: 37625543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo reflectance confocal microscopy imaging of vitiligo, nevus depigmentosus and nevus anemicus.
    Lai LG; Xu AE
    Skin Res Technol; 2011 Nov; 17(4):404-10. PubMed ID: 21429011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo.
    Jian Z; Li K; Song P; Zhu G; Zhu L; Cui T; Liu B; Tang L; Wang X; Wang G; Gao T; Li C
    J Invest Dermatol; 2014 Aug; 134(8):2221-2230. PubMed ID: 24662764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide profiling reveals pervasive transcriptional alterations in fibroblasts derived from lesional skin in vitiligo including a reduced potential to proliferate.
    Gupta R; Misri R; Gupta A; Chowdhary M; Singh A
    Exp Dermatol; 2023 Apr; 32(4):331-340. PubMed ID: 36333875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roflumilast enhances the melanogenesis and attenuates oxidative stress-triggered damage in melanocytes.
    Chen Z; Li Y; Xie Y; Nie S; Chen B; Wu Z
    J Dermatol Sci; 2023 May; 110(2):44-52. PubMed ID: 37069030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin.
    Prignano F; Pescitelli L; Becatti M; Di Gennaro P; Fiorillo C; Taddei N; Lotti T
    J Dermatol Sci; 2009 Jun; 54(3):157-67. PubMed ID: 19282153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.