BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37230937)

  • 21. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo.
    Wańkowicz-Kalińska A; van den Wijngaard RM; Tigges BJ; Westerhof W; Ogg GS; Cerundolo V; Storkus WJ; Das PK
    Lab Invest; 2003 May; 83(5):683-95. PubMed ID: 12746478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulated autophagy increased melanocyte sensitivity to H
    He Y; Li S; Zhang W; Dai W; Cui T; Wang G; Gao T; Li C
    Sci Rep; 2017 Feb; 7():42394. PubMed ID: 28186139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered levels of Ets-1 transcription factor and matrix metalloproteinases in melanocytes from patients with vitiligo.
    Kumar R; Parsad D; Kanwar AJ; Kaul D
    Br J Dermatol; 2011 Aug; 165(2):285-91. PubMed ID: 21428970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decreased CD117 expression in hypopigmented mycosis fungoides correlates with hypomelanosis: lessons learned from vitiligo.
    Singh ZN; Tretiakova MS; Shea CR; Petronic-Rosic VM
    Mod Pathol; 2006 Sep; 19(9):1255-60. PubMed ID: 16778827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Evaluation of an antioxidant and mitochondria-stimulating cream formula on the skin of patients with stable common vitiligo].
    Rojas-Urdaneta JE; Poleo-Romero AG
    Invest Clin; 2007 Mar; 48(1):21-31. PubMed ID: 17432541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible mechanisms of hypopigmentation in lichen sclerosus.
    Carlson JA; Grabowski R; Mu XC; Del Rosario A; Malfetano J; Slominski A
    Am J Dermatopathol; 2002 Apr; 24(2):97-107. PubMed ID: 11979069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion.
    Le Poole IC; van den Wijngaard RM; Westerhof W; Das PK
    Br J Dermatol; 1997 Aug; 137(2):171-8. PubMed ID: 9292062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo.
    Lin X; Meng X; Song Z; Lin J
    Arch Biochem Biophys; 2020 Dec; 696():108670. PubMed ID: 33186606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitiligo Skin: Exploring the Dermal Compartment.
    Kovacs D; Bastonini E; Ottaviani M; Cota C; Migliano E; Dell'Anna ML; Picardo M
    J Invest Dermatol; 2018 Feb; 138(2):394-404. PubMed ID: 29024688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical and histopathologic characteristics of trichrome vitiligo.
    Hann SK; Kim YS; Yoo JH; Chun YS
    J Am Acad Dermatol; 2000 Apr; 42(4):589-96. PubMed ID: 10727303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte.
    Ng CY; Chan YP; Chiu YC; Shih HP; Lin YN; Chung PH; Huang JY; Chen HK; Chung WH; Ku CL
    J Dermatol Sci; 2023 Jun; 110(3):78-88. PubMed ID: 37221109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autologously transplanted dermis-derived cells alleviated monobenzone-induced vitiligo in mouse.
    Erdoğan A; Mutlu HS; Solakoğlu S
    Exp Dermatol; 2022 Sep; 31(9):1355-1363. PubMed ID: 35538739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death.
    Xuan Y; Yang Y; Xiang L; Zhang C
    Oxid Med Cell Longev; 2022; 2022():8498472. PubMed ID: 35103096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The involvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: Protective effects of curcumin and capsaicin.
    Becatti M; Prignano F; Fiorillo C; Pescitelli L; Nassi P; Lotti T; Taddei N
    Antioxid Redox Signal; 2010 Nov; 13(9):1309-21. PubMed ID: 20085492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo.
    Shi Q; Zhang W; Guo S; Jian Z; Li S; Li K; Ge R; Dai W; Wang G; Gao T; Li C
    Cell Death Differ; 2016 Mar; 23(3):496-508. PubMed ID: 26315342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology.
    Yamamoto A; Yang L; Kuroda Y; Guo J; Teng L; Tsuruta D; Katayama I
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitiligo-related neuropeptides in nerve fibers of the skin.
    Lazarova R; Hristakieva E; Lazarov N; Shani J
    Arch Physiol Biochem; 2000 Jul; 108(3):262-7. PubMed ID: 11094379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Berberine protects immortalized line of human melanocytes from H
    Jiang W; Li S; Chen X; Zhang W; Chang Y; He Y; Zhang S; Su X; Gao T; Li C; Jian Z
    J Dermatol Sci; 2019 Apr; 94(1):236-243. PubMed ID: 30987854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RIP1-Mediated Necroptosis Facilitates Oxidative Stress‒Induced Melanocyte Death, Offering Insight into Vitiligo.
    Li B; Yi X; Zhuang T; Zhang S; Li S; Yang Y; Cui T; Chen J; Chang Y; Gao T; Li C; Liu L
    J Invest Dermatol; 2021 Dec; 141(12):2921-2931.e6. PubMed ID: 34102211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vitamin D protects human melanocytes against oxidative damage by activation of Wnt/β-catenin signaling.
    Tang L; Fang W; Lin J; Li J; Wu W; Xu J
    Lab Invest; 2018 Dec; 98(12):1527-1537. PubMed ID: 30206310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.