These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37230937)

  • 41. SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo.
    Yi X; Guo W; Shi Q; Yang Y; Zhang W; Chen X; Kang P; Chen J; Cui T; Ma J; Wang H; Guo S; Chang Y; Liu L; Jian Z; Wang L; Xiao Q; Li S; Gao T; Li C
    Theranostics; 2019; 9(6):1614-1633. PubMed ID: 31037127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications.
    Chang WL; Ko CH
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HMGB1 deficiency reduces H
    Mou K; Liu W; Miao Y; Cao F; Li P
    J Cell Mol Med; 2018 Dec; 22(12):6148-6156. PubMed ID: 30338917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ginkgo biloba extract protects human melanocytes from H
    Zhang S; Yi X; Su X; Jian Z; Cui T; Guo S; Gao T; Li C; Li S; Xiao Q
    J Cell Mol Med; 2019 Aug; 23(8):5193-5199. PubMed ID: 31148371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
    van den Boorn JG; Konijnenberg D; Dellemijn TA; van der Veen JP; Bos JD; Melief CJ; Vyth-Dreese FA; Luiten RM
    J Invest Dermatol; 2009 Sep; 129(9):2220-32. PubMed ID: 19242513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes.
    Qiao Z; Wang X; Xiang L; Zhang C
    Oxid Med Cell Longev; 2016; 2016():3401570. PubMed ID: 28018522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Melanocyte-protective effect of afzelin is mediated by the Nrf2-ARE signalling pathway via GSK-3β inactivation.
    Jung E; Kim JH; Kim MO; Lee SY; Lee J
    Exp Dermatol; 2017 Sep; 26(9):764-770. PubMed ID: 27992083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aberrant ETS-1 signalling impedes the expression of cell adhesion molecules and matrix metalloproteinases in non-segmental vitiligo.
    Srivastava N; Bishnoi A; Mehta S; Rani S; Kumar R; Bhardwaj S; Sendhil Kumaran M; Keshavamurthy V; Gupta S; Parsad D
    Exp Dermatol; 2020 Jun; 29(6):539-547. PubMed ID: 32350934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nuclear Factor Erythroid 2-Related Factor 2 in Vitiligo.
    Romano-Lozano V; Cruz-Avelar A; Peralta Pedrero ML
    Actas Dermosifiliogr; 2022; 113(7):705-711. PubMed ID: 35288099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Repigmentation by combined narrow‑band ultraviolet B/adipose‑derived stem cell transplantation in the mouse model: Role of Nrf2/HO‑1‑mediated Ca
    Bian Y; Yu H; Jin M; Gao X
    Mol Med Rep; 2022 Jan; 25(1):. PubMed ID: 34751412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative stress and vitiligo: the Nrf2-ARE signaling connection.
    Qiu L; Song Z; Setaluri V
    J Invest Dermatol; 2014 Aug; 134(8):2074-2076. PubMed ID: 25029322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo confocal laser scanning microscopy of hypopigmented macules: a preliminary comparison of confocal images in vitiligo, nevus depigmentosus and postinflammatory hypopigmentation.
    Xiang W; Xu A; Xu J; Bi Z; Shang Y; Ren Q
    Lasers Med Sci; 2010 Jul; 25(4):551-8. PubMed ID: 20180143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo.
    Elassiuty YE; Klarquist J; Speiser J; Yousef RM; El Refaee AA; Hunter NS; Shaker OG; Gundeti M; Nieuweboer-Krobotova L; Le Poole IC
    Exp Dermatol; 2011 Jun; 20(6):496-501. PubMed ID: 21426408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decreased expression of neuregulin1 in the lesional skin of vitiligo patients.
    Rani S; Kumari U; Bhardwaj S; Parsad D; Sharma VL; Kumar R
    Int J Dermatol; 2019 Feb; 58(2):242-249. PubMed ID: 30074619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunohistochemical study of perforin and apoptosis stimulation fragment ligand (FasL)in active vitiligo.
    Hassan AS; Kohil MM; Sayed SSE; Mahmoud SB
    Arch Dermatol Res; 2021 Aug; 313(6):453-460. PubMed ID: 32785835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo.
    Zhou Z; Li CY; Li K; Wang T; Zhang B; Gao TW
    Br J Dermatol; 2009 Sep; 161(3):504-9. PubMed ID: 19558554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study.
    Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O
    J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ATP-P2X7-Induced Inflammasome Activation Contributes to Melanocyte Death and CD8
    Ahn Y; Seo J; Lee EJ; Kim JY; Park MY; Hwang S; Almurayshid A; Lim BJ; Yu JW; Oh SH
    J Invest Dermatol; 2020 Sep; 140(9):1794-1804.e4. PubMed ID: 32035094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer.
    Panieri E; Telkoparan-Akillilar P; Saso L
    Biofactors; 2023 Mar; 49(2):228-250. PubMed ID: 36310374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Role of Regulatory Cell Death in Vitiligo.
    Liu LY; He SJ; Chen Z; Ge M; Lyu CY; Gao D; Yu JP; Cai MH; Yuan JX; Zhang JL
    DNA Cell Biol; 2024 Feb; 43(2):61-73. PubMed ID: 38153369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.