These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37230985)

  • 1. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training.
    Lin Z; Yin S; Shi L; Zhou W; Zhang YJ
    J Chem Inf Model; 2023 Apr; 63(7):1894-1905. PubMed ID: 36946514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Node-Aligned Graph-to-Graph: Elevating Template-free Deep Learning Approaches in Single-Step Retrosynthesis.
    Yao L; Guo W; Wang Z; Xiang S; Liu W; Ke G
    JACS Au; 2024 Mar; 4(3):992-1003. PubMed ID: 38559728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits.
    Sacha M; Błaż M; Byrski P; Dąbrowski-Tumański P; Chromiński M; Loska R; Włodarczyk-Pruszyński P; Jastrzębski S
    J Chem Inf Model; 2021 Jul; 61(7):3273-3284. PubMed ID: 34251814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNN-based two-branch multi-scale feature extraction network for retrosynthesis prediction.
    Yang F; Liu J; Zhang Q; Yang Z; Zhang X
    BMC Bioinformatics; 2022 Sep; 23(1):362. PubMed ID: 36056300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking.
    Li J; Fang L; Lou JG
    J Cheminform; 2023 Jun; 15(1):58. PubMed ID: 37291642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G
    Chen Z; Ayinde OR; Fuchs JR; Sun H; Ning X
    Commun Chem; 2023 May; 6(1):102. PubMed ID: 37253928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks.
    Wang Y; Pang C; Wang Y; Jin J; Zhang J; Zeng X; Su R; Zou Q; Wei L
    Nat Commun; 2023 Oct; 14(1):6155. PubMed ID: 37788995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
    Tetko IV; Karpov P; Van Deursen R; Godin G
    Nat Commun; 2020 Nov; 11(1):5575. PubMed ID: 33149154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks.
    Seidl P; Renz P; Dyubankova N; Neves P; Verhoeven J; Wegner JK; Segler M; Hochreiter S; Klambauer G
    J Chem Inf Model; 2022 May; 62(9):2111-2120. PubMed ID: 35034452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reagent prediction with a molecular transformer improves reaction data quality.
    Andronov M; Voinarovska V; Andronova N; Wand M; Clevert DA; Schmidhuber J
    Chem Sci; 2023 Mar; 14(12):3235-3246. PubMed ID: 36970100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MARS: a motif-based autoregressive model for retrosynthesis prediction.
    Liu J; Yan C; Yu Y; Lu C; Huang J; Ou-Yang L; Zhao P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38426338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.