These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37230994)

  • 1. Comprehensive Electrochemical Impedance Spectroscopy Study of Flow-Electrode Capacitive Deionization Cells.
    Kim N; Park J; Cho Y; Yoo CY
    Environ Sci Technol; 2023 Jun; 57(23):8808-8817. PubMed ID: 37230994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-electrode capacitive deionization: A review and new perspectives.
    Yang F; He Y; Rosentsvit L; Suss ME; Zhang X; Gao T; Liang P
    Water Res; 2021 Jul; 200():117222. PubMed ID: 34029869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization.
    Shi C; Wang H; Li A; Zhu G; Zhao X; Wu F
    Water Res; 2023 Feb; 230():119517. PubMed ID: 36608524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination.
    Zhang X; Zhou H; He Z; Zhang H; Zhao H
    Water Res; 2022 Jul; 220():118642. PubMed ID: 35635913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance.
    Yang F; Ma J; Zhang X; Huang X; Liang P
    Water Res; 2019 Nov; 164():114904. PubMed ID: 31382149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water.
    Zhang X; Pang M; Wei Y; Liu F; Zhang H; Zhou H
    Water Res; 2024 Mar; 251():121147. PubMed ID: 38277832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system.
    Xu L; Mao Y; Zong Y; Wu D
    Water Res; 2021 Feb; 190():116782. PubMed ID: 33387952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration.
    Ma J; Ma J; Zhang C; Song J; Dong W; Waite TD
    Water Res; 2020 Jan; 168():115186. PubMed ID: 31655437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation.
    Ma J; Zhang C; Yang F; Zhang X; Suss ME; Huang X; Liang P
    Environ Sci Technol; 2020 Jan; 54(2):1177-1185. PubMed ID: 31829572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes.
    Tang K; Zhou K
    Environ Sci Technol; 2020 May; 54(9):5853-5863. PubMed ID: 32271562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field.
    Xu L; Peng S; Wu K; Tang L; Wu M; Zong Y; Mao Y; Wu D
    Water Res; 2022 Aug; 222():118963. PubMed ID: 35970008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis.
    Wang L; Zhang C; He C; Waite TD; Lin S
    Water Res; 2020 Aug; 181():115917. PubMed ID: 32505888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization.
    Luo L; He Q; Ma Z; Yi D; Chen Y; Ma J
    Water Res; 2021 Sep; 203():117522. PubMed ID: 34384947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.